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Abstract

The 30×30 commitment outlined in the Kunming–Montreal Global Biodiversity Frame-
work (KM-GBF) offers a critical opportunity for enhancing global biodiversity conser-
vation. However, KM-GBF’s efforts to address climate change impacts remain limited.
We developed 1-km-resolution hotspot maps for climate change vulnerability with the
exposure–sensitivity–adaptation framework, species distribution for 4 terrestrial vertebrate
taxa, and carbon stock capacity including organic and biomass carbon, for 2030. Then, we
developed a systematic conservation planning approach that, beyond the 3 conservation
features mentioned, also considered human activities, connectivity, and Shared Socioe-
conomic Pathways. The plan included the identification of conservation priorities and
gaps for China and the Association of Southeast Asian Nations region (China-ASEAN)
at regional, national, and biogeographical scales. We found that 6.59% of the land in
China-ASEAN overlapped all 3 hotspots, primarily in Indonesia, Malaysia, and Cambo-
dia. Across all 3 spatial scales, newly identified conservation priorities were concentrated
in low-elevation areas, particularly between 10◦ S and 10◦ N at the regional scale. Cur-
rently, protected areas cover 15.49% of China-ASEAN’s land, representing 7.00% of
climate change vulnerability hotspots, 12.45% of species distribution potential hotspots,
and 14.56% of carbon stock capacity hotspots for 2030. If the 30×30 commitment is real-
ized at a regional scale, these percentages are expected to increase to 22.93%, 33.15%,
and 34.75%, respectively. Areas of conservation priority identified with our framework
were significantly affected by the scale of protection coordination, yet they remained sta-
ble across Shared Socioeconomic Pathways, indicating their effectiveness in diverse future
scenarios. The biogeographical scale had the smallest average conservation gap for all 12
countries (13.14%). Financial challenges are highest for Indonesia at the regional scale
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and for Malaysia at the national and biogeographical scales. Precise conservation based
on appropriate scales is essential to achieving the 30×30 commitment and maximizing its
conservation effectiveness under climate change.

KEYWORDS

biodiversity, climate change, conservation planning, Kunming–Montreal Global Biodiversity Framework,
protected areas, Southeast Asia

INTRODUCTION

Biodiversity loss endangers Earth’s life-support systems and
stands as one of the most pressing challenges confronting
human society today (Bai et al., 2021; Naidoo et al., 2019).
As the foundation of modern-day conservation approaches,
protected areas (PAs) are critical fortresses for maintaining bio-
diversity and resisting human disturbance. Existing PA networks
have large coverage gaps (Watson et al., 2014)—only 22.5 mil-
lion km2 (16.64%) of land and inland water ecosystems are in
documented protected and conserved areas (Allan et al., 2022;
UNEP-WCMC et al., 2020; Wu et al., 2023). To address these
gaps, priorities for conservation of forest intactness have been
identified, ecosystem restorations have been conducted, and
habitat for different taxa and endangered species has been pro-
tected, for example. However, such efforts are often based on
historical data and static environmental conditions, thus neglect-
ing the crucial dynamic factor of climate change. The impacts of
climate change on biodiversity and ecosystems are intricate and
profound. For example, rising temperatures and increasingly
frequent extreme weather events may render previously pro-
tected habitats unsuitable for species (Urban, 2015). Affected
species may migrate to more climatically suitable environments
that have been heavily modified by humans (Elsen et al., 2020;
Wang et al., 2020). Climate change can alter the structure, com-
position, and function of ecosystems (Doughty, 2015), posing
great risks to vulnerable ecosystems. Given the above impacts
of climate change at species and ecosystem levels (Jung et al.,
2021; Visconti et al., 2019), current PA networks may not be
able to inadequately reduce extinction rates and prevent the
degradation of critical ecosystems (Baynham-Herd et al., 2018;
Dobrowski et al., 2021; Farhadinia et al., 2019).

The year 2030 marks the midterm goals for climate-specific
policies in many countries, especially tropical nations. Over 190
countries have committed to protecting 30% of Earth’s surface
by 2030, a target known as 30×30, as outlined in the KM-
GBF. Achieving this target globally is a formidable challenge
that requires robust global assessments and fine-scale regional
studies to build experience and enhance social acceptance (Yu
et al., 2022). Efforts to integrate climate change in conser-
vation prioritization have significantly advanced the field and
have focused on particular metrics, such as climatic velocity,
environmental diversity, and carbon storage, to enhance spatial
resilience and ecological stability (Carroll et al., 2017; Mackey
et al., 2012; Zhu et al., 2021). However, further work is needed
to fully address climate change vulnerability by incorporating
climate change exposure, sensitivity, and adaptation metrics in

conservation prioritization. The KM-GBF has made promising
strides, such as introducing the bioclimatic ecosystem resilience
index (BERI) (Ferrier et al., 2020), but its overall efforts to
develop climate-change-related indicators remain limited. When
estimating which areas should be prioritized for protection
under 30×30, how nations choose to coordinate the expan-
sion of PAs is crucial (Sasmito et al., 2023). This coordination
can be transnational or national. Global or regional coordina-
tion would optimally protect biodiversity in the broadest sense.
Coordinating protection at the national level enables each con-
tracting party to organize protection within its own borders
more feasibly. The biogeographical region-based approach can
significantly increase the diversity of ecosystem types in the PA
network.

We selected 2030 as our target year and China and the
Association of Southeast Asian Nations region (hereafter
China-ASEAN region) as our research area, given its global
significance in conservation (Appendix S1). This region, home
to the world’s most carbon-rich mangroves and 4 megadiverse
countries (China, Indonesia, Malaysia, and the Philippines),
serves as a vital biodiversity corridor for migration and repro-
duction (Carvalho et al., 2019; Mason et al., 2020). However, it
faces escalating threats from forest clearance and biodiversity
loss (Feng et al., 2021; Sasmito et al., 2023). For China-ASEAN,
we mapped climate change vulnerability, species distribution
potential, and carbon stock capacity by 2030 (i.e., conservation
features). We simulated 30×30 PA expansion scenarios under
varying spatial planning scales and Shared Socioeconomic Path-
ways (SSPs) (Figure 1). We quantified the representativeness of
existing PAs in safeguarding 2030 conservation hotspots and
assessed the improved representativeness achievable under the
30×30 targets. Conservation gaps and challenges faced by the
12 countries in China-ASEAN in addressing these gaps were
measured. Additionally, the impact of different SSP scenarios
and the spatial scale of planning on these gaps and challenges
was examined. We sought to provide an integrative framework
for identifying conservation priorities under future climate sce-
narios and insights to enhance PA networks in China-ASEAN
through coordinated spatial planning.

METHODS

Climate change vulnerability

Climate change vulnerability was characterized within a widely
accepted framework of climate change exposure, sensitivity, and
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FIGURE 1 Framework of a comprehensive methodology for predicting and analyzing conservation features in China and the Association of Southeast Asian
Nations (China-ASEAN) to meet the 30×30 target (30% of Earth protected by 2030) by forecasting climate change vulnerability, species distribution potential, and
carbon stock capacity across regional, national, and biogeographical spatial scales under Shared Socioeconomic Pathways SSP126, SSP245, SSP370, and SSP585.

adaptation (Li et al., 2018; Ureta et al., 2022). The climate
change exposure index quantifies the degree of this exposure
in a given environment. Typically, climate change exposure is
assessed using climate velocity, which measures the rate of shift-
ing climate conditions across landscapes (Brito-Morales et al.,
2018; Loarie et al., 2009). The climate change sensitivity index
quantifies the potential for refugia or climatically stable areas to
occur under climate change (Bowler et al., 2017; Jones et al.,
2009). The climate change adaptation index measures environ-
mental heterogeneity, reflecting a region’s diversity of niches,
facilitation of migration, or provision of ecosystem components
in response to changing climate conditions (Keppel et al., 2011).
These indices are designed to assess landscape-level vulnera-
bility to climate change, rather than species-specific or biotic
ecosystem vulnerabilities (Nicholson et al., 2021). They provide
interpretable and actionable metrics to improve the resilience
and representativeness of PAs across diverse contexts, rather
than serving as inputs to a black-box prioritization model. We
used Equation (1) to incorporate climate change exposure, sen-

sitivity, and adaptation in an overall climate change vulnerability
(CCV) index (Ippolito et al., 2010; Li et al., 2018):

CCV =
√

EI × SI
1 + AI

, (1)

where CCV is the climate change vulnerability, EI is the climate
change exposure index, SI is the sensitivity index, and AI is the
adaptation index.

The climate change exposure index was calculated by deter-
mining the velocity of temperature and precipitation (Li et al.,
2018; Michalak et al., 2020). Species undergo shifts in their
distribution ranges in response to climate change. The veloc-
ity at which climate changes take place determines the required
migration rate for species to adapt and stay synchronized (Car-
rasco et al., 2021). We computed the instantaneous velocity
of climate change with the ratio of temporal and spatial gra-
dients of mean annual near-surface temperature and annual
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precipitation (Loarie et al., 2009):

Climate velocities =
Temporal gradient

Spatial gradient
=

◦C∕year
◦C∕km

or
mm∕year

mm∕km
= km

year
.

The temporal gradient denotes the local contrast between
baseline and future climate layer values in each grid cell. We
calculated gradient velocities for temperature (degrees Celsius
per year) and precipitation (millimeters per year). Tempera-
ture and precipitation data were acquired from the World-
Clim (https://worldclim.org/data/cmip6/cmip6climate.html)
database for the baseline (1970–2000) and future (2020–2040).

To address uncertainties, we averaged outputs from 3 widely
used global climate models (GCMs) (IPSL-CM6A-LR, GISS-
E2-1-H, and MPI-ESM1-2-LR) across 4 SSPs (126, 245, 370,
and 585). Spatial gradients were computed using future climate
data in a 3×3 grid cell neighborhood and the average maxi-
mum technique (Burrows et al., 2011). We calculated temporal
gradient velocities for temperature (degrees Celsius per year)
and precipitation (millimeters per year). North–south gradients
were derived as the variance in temperature and precipitation
between northern and southern grid cell pairs, normalized by
their distance. To convert cell height in latitudinal degrees to
kilometers, we used a conversion factor of 111.325 km/degree.
Similarly, west–east gradients were calculated for western and
eastern grid cell pairs, and the conversion of cell width in longi-
tudinal degrees to kilometers was achieved using Equation (3):

Cell width = cos
( 𝜋

180
𝜃
)
× 111.325, (3)

where cell width is in kilometers and 𝜃 is the cell width in
longitudinal degrees. The average north–south and west–east
gradients for the focal cell were subsequently computed. To mit-
igate the occurrence of flat spatial gradients that could result in
infinite velocity values (Sandel, 2011), we introduced uniformly
distributed random noise to each cell. The added noise ranged
from −0.05 to 0.05◦C for temperature and from −0.5 to 0.5 mm
for precipitation (Li et al., 2018).

The sensitivity index aligns with greenspot analysis which
is based on satellite data Fraction of photosynthetically Active
Radiation (FPAR), identifies climatically stable microrefugia,
and provides insights for global conservation planning (Mackey
et al., 2012). For the sensitivity index, we used phenologi-
cal observations made over 20 years or longer (Menzel et al.,
2006; Reed et al., 2013; Thackeray et al., 2010). We calcu-
lated the standard deviation of the enhanced vegetation index
(EVI) over 22 years (2001–2022), excluding the maximum and
minimum values for each grid cell, to represent ecosystem sensi-
tivity. We utilized the MODIS Terra Vegetation Indices product
(MOD13Q1) to generate annual EVI data for 2001–2022. The
MOD13Q1 provides 16-day composites of EVI at a 250-m
spatial resolution. The data were sourced from the NASA LP

DAAC (Land Processes Distributed Active Archive Center) via
Google Earth Engine. To derive yearly EVI values, we aver-
aged the 16-day EVI composites for each year. This method
allowed us to monitor and analyze vegetation dynamics over
the specified period with high temporal consistency and spatial
detail.

The adaptation index was derived from the environmental
heterogeneity of the central pixel and its surrounding pixels
(Zheng et al., 2023). As a key driver of adaptation potential
in conservation planning (Carroll et al., 2017), environmental
heterogeneity captures spatial variability in abiotic factors, such
as topography and land cover. High topographic heterogeneity
fosters diverse microclimates and resources that support species
richness and local biodiversity, and land-cover heterogeneity
enhances plant diversity and structural variation, strengthen-
ing ecosystem resilience and capacity to adapt to environmental
changes (Gao et al., 2021). To quantify topographic heterogene-
ity, we used the ASTER Global Digital Elevation Model V003
(ASTER GDEM) at a 1-km resolution (available at https://
www.earthdata.nasa.gov/). We calculated the standard deviation
of elevation values in a 5 × 5-km moving window and assigned
this value to the central pixel. We calculated the Shannon diver-
sity index (Hʹ) of the central pixel with a 5 × 5-km moving
window to quantify land-cover heterogeneity. We used the PFT
(plant functional type)-based land projection data set under the
SSPs (Chen et al., 2022). These projections cover 20 land types
(19 of which exist in China-ASEAN) for 2015–2100 at a 1-km
resolution. We calculated Hʹ as follows:

H ′ = −
∑(

pi × ln pi

)
, (4)

where pi is the proportion of land-cover type 𝑖 in the window.
High spatial variability in elevation indicates the availability of
diverse thermal refuge conditions in a small area (Elsen et al.,
2021; Keppel et al., 2011).

Species distribution potential

To explore the conservation value of biodiversity at the pixel
scale under future climate conditions, we employed the Max-
Ent model (Convertino et al., 2014; Phillips et al., 2006, 2017)
to project future species distribution potential. Although using
species’ range extent derived from the International Union
for Conservation of Nature (IUCN) Red List (https://www.
iucnredlist.org/en) (D’Agata & Maina, 2022) or extracting a
species’ area of habitat (AOH) based on habitat preferences
(Shen et al., 2023) are more commonly used methods, these
approaches represent only the current distribution of species
and do not account for potential changes in species distribu-
tion due to climate change, which cannot be overlooked. The
MaxEnt model, grounded in the principle of maximum entropy,
facilitates the simulation of a species’ probability distribution by
incorporating known constraints, such as observation records
and bioclimatic variables (Xu et al., 2017). We specifically tar-
geted terrestrial vertebrate taxa: mammals, birds, reptiles, and
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amphibians. We obtained the geographic coordinates of species
distribution points for 2225 reptiles, 1611 amphibians, 2670
mammals, and 4202 birds via 2 methods. First, we collected
occurrence records from PREDICTS (Hudson et al., 2017) and
the Global Biodiversity Information Facility (GBIF) (https://
www.gbif.org) for the 4 taxa in our research area. Second, we
divided the spatial range of each species into grids to generate
a series of random points. Data on the ranges of mammals and
amphibians were extracted from the IUCN Red List database.
Range maps for birds were sourced from BirdLife Interna-
tional (https://www.birdlife.org/), and information on reptiles
was compiled from the IUCN and the Global Assessment of
Reptile Distributions (GARD). We employed DGGRID soft-
ware (Sahr, 2018) to divide China-ASEAN into 6822 equal-area
hexagonal grids with the ISEA DGG (icosahedral Snyder equal-
area discrete global grid). We generated a single random point
in each hexagonal grid that corresponded to the species’ dis-
tribution range and filtered out duplicate or erroneous records.
The remaining coordinates were used as input for MaxEnt. A
summary of species counts and occurrence records is in Table 1.

We retrieved 19 bioclimatic variables for 4 SSP scenarios
from 3 GCMs for 2021–2040 (Appendix S2) and used them in
the environmental layers for MaxEnt. To further enhance model
accuracy, we also incorporated the PFT-based land projection
data set (Chen et al., 2022) as an additional environmental
layer. In configuring the MaxEnt model, 25% of the species
occurrence points were randomly selected as test samples; the
remaining 75% were used for model training. Other parameter
settings included a maximum of 500 iterations, a regularization
multiplier set to 1, and a cap of 10,000 background points. The
MaxEnt procedure was executed with 10 bootstrap replications
for each species taxon. For the distribution of each taxon under
each SSP scenario, we employed the mean predictions derived
from 3 GCMs to enhance robustness. Consequently, the species
distribution potential at each cell was characterized by the mean
distribution probabilities of all 4 vertebrate taxa. We ensured
good predictive accuracy by setting a minimum area under the
curve (AUC) threshold of 0.75 for model performance and
evaluated models with quantitative metrics (e.g., AUC) and qual-
itative validation by species experts to confirm alignment with
known ecological and distribution patterns.

Carbon stock capacity

The carbon sequestration capacity of the ecosystem in 2030 was
assessed across China-ASEAN by integrating soil organic car-
bon and biomass carbon (Jung et al., 2021; Zhu et al., 2021).
Vulnerable soil organic carbon, representing carbon seques-
trations susceptible to potential loss over the next years due
to land-use changes, was evaluated separately for mineral and
organic soils. In line with the U.S. Department of Agriculture
(Mulligan, 2013), organic soils were defined as those with a
≥5% probability of being histosols, whereas other soils were
categorized as mineral soils (Hengl & Wheeler, 2018).

The loss of carbon sequestration in mineral soils due to cli-
mate change was estimated at a depth of 30 cm. For organic T
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soils, the depth was 200 cm (Hengl & Nauman, 2019). The
Intergovernmental Panel on Climate Change (IPCC) change
factors (applied to mineral soils) and emission factors (applied
to organic soils) were employed to estimate vulnerable soil
organic carbon (kilograms per square meter) sequestrations,
based on IPCC land-cover categories and climate zones.

Biomass carbon (megagrams per hectare) was estimated
using the integrated valuation of ecosystem services and trade-
offs (InVEST) model (Natural Capital Project, 2024). This
calculation involved determining carbon content in 3 distinct
pools, namely, aboveground biomass, belowground biomass,
and nonliving materials. Carbon sequestration densities for each
cell in the PFT-based land projection raster were computed
(Chen et al., 2022; Wu et al., 2023). The InVEST carbon seques-
tration model’s biophysical data (in Appendix S3) were devel-
oped from the IPCC lookup table (https://www.ipcc-nggip.
iges.or.jp/public/2019rf/vol4.html) and relevant literature (Bai
et al., 2021; Eslamdoust & Sohrabi, 2018).

We aggregated carbon sequestration in soil organic carbon
and biomass carbon across 4 SSPs to derive combined total car-
bon sequestration (megagrams per hectare). The results were
further aggregated to a resolution of 1 km to align with the
biodiversity data.

Recognizing biodiversity, carbon, and climate
hotspots

A random sample of 2000 points in China-ASEAN was ana-
lyzed to examine the relationships among climate change
vulnerability, species distribution potential, and carbon stock
capacity. Scatter plots with LOESS regression trend lines
and 95% confidence intervals were employed. Based on the
species distribution potential, ecosystem vulnerability to climate
change, and carbon stock capacity for each cell, we ranked
the scores for each factor and selected the 30% of cells with
the highest scores for biodiversity, carbon, and climate change
vulnerability as hotspots in China-ASEAN. We chose 30% as
the conservation target threshold because it ensures consis-
tency in identifying hotspots for each conservation feature;
aligns with the 30×30 target set by the KM-GBF, facilitat-
ing comparison of our 30×30 priority conservation areas and
representativeness across different protection elements; and
avoids the subjectivity and uncertainty associated with setting
an experience-based threshold. We calculated pairwise Jaccard
similarities for conservation priorities across the 4 SSP sce-
narios. Strong correlations represented spatially similar hotspot
distributions, whereas weak correlations represented spatially
divergent hotspot distributions.

Expansion scenarios and spatial prioritization

To assess the impact of spatial scale on the prioritization of
areas for conservation, we considered regional, national, and
biogeographical planning coordination scales. The regional sce-

nario equally weighed regional biodiversity, carbon, and climate
change vulnerability based on their value rankings across China-
ASEAN. The national scenario allocated protection evenly
across each country, ensuring that PAs were spread uniformly
across the political landscape. The biogeographical scenario
ensured even spatial representation from an ecological per-
spective by protecting equal portions of each biogeographical
province.

We used a hierarchical mask layer to prioritize existing PAs
before focusing on remaining cells. Data for the ASEAN
region’s PAs were sourced from the World Database on
Protected Areas (WDPA; www.protectedplanet.net) (UNEP-
WCMC & IUCN, 2024) and were supplemented by our database
on China’s PAs. Polygons of PAs were rasterized and pro-
jected onto a 1-km2 grid. We concentrated our analyses on
land in China-ASEAN that could accommodate future PAs.
We excluded areas with high human disturbance. These areas
were identified using the human footprint (HFP) index (Gassert
et al., 2023), which considers, for example, land-cover change,
population density, nighttime lights, roads, railways, and navi-
gable rivers. The original 100-m resolution was upscaled up to
1 km. Cells with an HFP value >20, representing roughly 8.89%
of the region, were excluded from our analyses (Eckert et al.,
2023).

The remaining cells, representing largely intact ecosystems,
were considered good candidates for protection. Because over
70% of Singapore’s area has an HFP >20, the remaining area
available for conservation planning was <30%. Thus, in the
national scenario, we used an HFP threshold of 35 for Singa-
pore, allowing 40% of the low-HFP area to be included in its
conservation planning. We used the single-feature connectiv-
ity form and negexp kernel type for connectivity calculations
in Zonation, and parameters were set to negexp (2, 10). Zona-
tion 5 with additive benefit function (z = 0.25) marginal loss
was employed to prioritize land in each conservation scenario
(Kareksela et al., 2013; Moilanen et al., 2022). For national and
biogeographical scenarios, subregions were used, where a full
prioritization was performed for each subregion separately and
then these prioritizations were combined into one final raster
that represented all of China-ASEAN.

Data for administrative areas were obtained from Global
Administrative Areas, and biogeographical boundaries were
sourced from Udvardy’s biogeographical provinces (Udvardy,
1975). These data were prepared by IUCN as a contribution
to the UNESCO MAB Programme aimed at devising a satis-
factory classification of the world’s biotic areas for conservation
purposes. The output of Zonation 5 is a raster of all unmasked
cells ranked according to their priority. From these rank maps,
we simulated the 30×30 scenario by selecting the 30% of cells
with the highest conservation priority in each scenario, including
already PAs. Although all rank maps were generated (available
on request), we included only the 3 scales of planning scenarios
under SSP245, based on the assumption that current socioe-
conomic development trends and emission reduction efforts
will remain largely unchanged, resulting in a medium-emission
scenario (projected global warming 2.5–3◦C).
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Conservation gaps in spatial commitments

To highlight the uneven challenges posed by changing conser-
vation planning scales, we calculated the conservation gap for
each country and the mean HFP per unprotected priority cell,
mean population per unprotected priority cell, and area of the
country’s unprotected priority conservation areas divided by
its per capita gross domestic product (GDP) under 3 spatial
coordination scenarios.

RESULTS

Prediction of climate change vulnerability,
species distribution, and carbon stock for 2030

Results for the intermediate SSP245 scenario showed a spa-
tial pattern of climate change vulnerability for 2030 under the
SSP245 scenario (Appendix S4). High climate change expo-
sure values in China-ASEAN occurred primarily in the North
China Plain, the Northeast China Plain, and the lowland areas
of southern Indochina. High sensitivity values concentrated
in urban areas. Adaptation values were significantly higher
(Appendix S4) in high-elevation regions, such as the Yunnan–
Guizhou Plateau, the southeastern hills of China, and the
northern Indo-China Peninsula. Results for the intermediate
SSP245 scenario showed a high species distribution potential
across China-ASEAN, particularly in lowland areas and south-
ern regions (Appendix S5). The distribution potential patterns
for amphibians, birds, mammals, and reptiles were generally
consistent at the regional scale. Values in tropical and subtropi-
cal climate zones were higher than in temperate and montane
climate zones. Results for the intermediate SSP245 scenario
showed a spatial pattern of carbon stock capacity from biomass
carbon and soil carbon across China-ASEAN (Appendix S6).
Soil carbon in China-ASEAN was primarily distributed in the
lowland areas of Indonesia and the Great and Lesser Khingan
Mountains in northeastern China. In contrast, biomass carbon
was mainly found in the tropical rainforest climate zones and
high-elevation areas of the Indo-China Peninsula.

Climate change vulnerability decreased as elevation increased
and remained relatively the same across different latitudes; it
was notably lower between longitudes 75◦ E and 100◦ E.
Species distribution potential decreased as elevation increased
but showed relatively large increases from 4000 to 5000 m eleva-
tion. It was highest between latitudes 11◦ S and 20◦ N, dropped
at 20◦ N, and increased again between latitudes 40◦ N and
50◦ N. Species distribution potential was relatively high between
longitudes 92◦ E and 122◦ E. Many areas with high species
distribution potential overlapped with regions of high climate
change vulnerability and coastal zones, making them susceptible
to sea-level rise. These regions also faced intensive human activi-
ties and deforestation, rendering their habitats highly vulnerable
to human impact. Carbon stock capacity was relatively similar
across different elevation gradients, peaking between latitudes
11◦ S and 10◦ N and longitudes 93◦ E and 140◦ E.

Overlap in hotspots sites across conservation
features

Correlation of climate change vulnerability, species distribution,
and carbon stock capacity in China-ASEAN region under the
SSP245 scenario showed that regions with high species dis-
tribution potential or carbon stock capacity tended to exhibit
relatively higher climate change vulnerability (Appendix S7).
Under SSP245, 56.31% of the land in China-ASEAN was
in at least one of the climate, carbon, or species hotspots
(Figure 2). Among these, cells where all 3 types of hotspots
overlapped account for 6.59% of the region, primarily located
in Indonesia, Malaysia, and Cambodia. Cells belonging to 2
types of hotspots constituted 20.73%. The highest amount
of overlap was between species and carbon hotspots, fol-
lowed by climate and species hotspots, and climate and carbon
hotspots. The remaining 28.98% of cells belonged to only one
type of hotspot, mainly distributed in China, Thailand, and
Myanmar.

Variation in spatial priorities across scenarios

Areas with excessively high human footprints (8.40% of China-
ASEAN), primarily located in Singapore and central and eastern
China, were excluded (Appendix S8). The distribution of pri-
ority conservation areas under the SSP245 scenario exhibited
different patterns across regional, national, and biogeographical
scales (Figure 3). The priority rank maps across all coordinating
scales and SSP scenarios are in Figshare (https://figshare.com/
s/8fd20f32b3eb73b089f6). At the regional scale, newly identi-
fied priority lands were mainly distributed between 10◦ S and
10◦ N, where species and carbon hotspots were concentrated.
Their distribution was minimal in China and Indochina. At the
national scale, newly identified priority lands peaked between
20◦ N and 30◦ N, primarily because, under the national scenario,
China, the largest country in the region, had its newly identi-
fied priority lands mainly distributed in the southeastern hills.
Although this area is not a hotspot for species and carbon in
the region, it is undoubtedly one of the most valuable areas for
conservation in China. At the biogeographical scale, newly iden-
tified priority lands were relatively uniformly distributed across
latitudes and longitudes.

The distribution of 30×30 priority land was predominantly
concentrated at lower elevations across all SSP scenarios and
spatial scales (Appendix S9a–c), with a marked decrease in pri-
ority land area as elevation increased. The peak around 5000 m
was primarily due to a significant portion of China’s existing
PAs being located on the Qinghai–Tibet Plateau, where ele-
vations are high. The correlations of the priority land spatial
distribution for each SSP scenario under the 3 coordinating
scales showed that the distribution of priority land was highly
correlated across the 4 SSP scenarios. The highest correlation
occurred at the regional scale, followed by the national scale and
biogeographical scale (Appendix S9d–f). In contrast, the influ-
ence of different SSP scenarios on these priorities was minimal.
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FIGURE 2 In China and the Association of Southeast Asian Nations (China-ASEAN), (a) overlay of climate change vulnerability, species distribution
potential, and carbon stock capacity hotspots, (b) distribution of climate change vulnerability hotspots and their value rank, (c) distribution of species distribution
potential hotspots and their value rank, and (d) distribution of carbon stock capacity hotspots and their value ranking. Climate, biodiversity, and carbon hotspots
were identified, respectively, by selecting the 30% of areas with the highest climate change vulnerability, species distribution potential, and carbon stock capacity.

Regardless of SSP, the conservation priorities identified by our
framework remained relatively stable.

Limited existing protection and large
conservation gains under 30×30

The existing PAs, covering 15.49% of China-ASEAN’s ter-
restrial land, contained 12.45% of the 2030 species hotspots
and 14.56% of the 2030 carbon hotspots. Representation of
climate hotspots was lower, at just 7.00% (Figure 4). Thus,
there was some conservation of carbon storage but a signifi-
cant shortfall in biodiversity conservation and a clear deficiency
in addressing climate change and protecting vulnerable areas.
Under regional planning, species hotspot protection increased
by 20.70–33.15% (Figure 4b). At the national scale, protected
carbon hotspots increased by 20.85–35.41% (Figure 4c). The
increase in protection percentage for climate hotspots was
around 15.00% across all 3 planning scales, with little differ-
ence among them. Although biogeographical scale planning did
not provide the largest increase in representation for any of
the conservation hotspots relative to the regional and national
scales, it ensured the protection of 30% of each biogeographical

province, thereby increasing the ecosystem and biota represen-
tativeness of the PA network. In contrast, at the regional scale,
16 out of 25 (64%) biogeographical provinces in China-ASEAN
had PA coverage below 30%. Similarly, at the national scale, 12
out of 25 (48%) biogeographical provinces had PA coverage
below 30%.

Appraisal of administration-level conservation
gaps

Identifying priorities at different planning scales resulted in
significant variations in administration-level conservation gaps.
At the regional coordinating scale (Figure 5a), Singapore and
China almost would not need to increase their PAs to meet
the 30×30 target, whereas Cambodia, the Philippines, Laos,
Indonesia, Brunei, and Malaysia would need to increase their
national areas by 14.32–65.59% to achieve 30% protection of
their land. Particularly in Cambodia, where existing PAs already
cover 39.62% of the country’s land (the only country among
the 12 in China-ASEAN to have reached the 30% target), fur-
ther increases in PA would still be required under regional-scale
planning.
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CONSERVATION BIOLOGY 9 of 16

FIGURE 3 In China and the Association of Southeast Asian Nations (China-ASEAN), spatial priorities for (a) regional protection coordination, (b) national
protection coordination, and (c) biogeographical protection coordination and their latitude and longitude (dark gray, existing PAs in the conservation priority areas;
blue to red shading, rank of newly identified areas of conservation priority; coordinate axis gray, distribution of existing protected areas; coordinate axis red,
distribution of newly identified priorities; coordinate axis blue, distribution of newly identified priorities).

To achieve the 30×30 priorities under the national planning
scale (Figure 5b), each country would need to ensure that PAs
covered 30% of its own land area, resulting in conservation
gaps ranging from 0% to 24.48%. Vietnam, Malaysia, Indonesia,
Myanmar, and Singapore currently have protection proportions
below 15%, requiring increases of 15.11%, 17.18%, 18.24%,
23.39%, and 24.48%, respectively, to fill the conservation gaps
under the national planning scale. Under the biogeographical
coordinating scale (Figure 5c), the average gap across countries
was 13.14%, smaller than the 23.29% under the regional scale
and 14.25% under the national scale. Thailand, Vietnam, and
Singapore had the smallest conservation gaps, at 4.14%, 6.81%,
and 7.52%, respectively. Laos, Timor-Leste, and Malaysia had
the largest conservation gaps, at 21.55%, 18.40%, and 17.39%,
respectively.

Practical considerations for on-the-ground
implementation

At the national coordinating scale, the average HFP value per
newly identified conservation priority cell varied greatly across
countries (Figure 6a), ranging from 2.63 in Brunei to a max-
imum of 50 in Singapore. At the biogeographical planning
scale, the HFP value per newly identified priority cell for each
country was below 13%. The countries with the highest HFP
value per newly identified priority cell at regional, national, and
biogeographical planning scales were Malaysia, Singapore, and
Timor-Leste, respectively.

Regarding the average human population per newly identi-
fied priority cell (Figure 6b), Indonesia had the highest at the
regional scale (10.45/km2), and Singapore had the highest at the
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10 of 16 WU ET AL.

FIGURE 4 For China and the Association of Southeast Asian Nations (China-ASEAN) and under the SSP245 (Shared Socioeconomic Pathway) scenario, (a)
hotspots of climate change vulnerability (climate hotspots), (b) hotspots of species distribution potential (species hotspots), and (c) hotspots of carbon stock
capacity (carbon hotspots) in existing PAs and regional, national, and biogeographical priority conservation area (percentages in donut charts, percentages of climate
[blue], species [purple], and carbon [green] hotspots in protected [dark shade] and unprotected [light shade] areas).

national and biogeographical scales (exceeding 1000/km2). In
contrast, other countries had an average population density per
newly identified priority cell below 10 people/km2 at all spa-
tial scales. At the regional scale, the top 3 countries with the
highest area of the country’s unprotected priority areas divided
by their per capita GDP (Figure 6c) were Indonesia, Myanmar,
and Laos. At the national and biogeographical scales, the 3 with
the most such areas were Myanmar, China, and Indonesia. Due
to its small land area and high per capita GDP, Singapore had
the smallest mean newly identified priority area per capita GDP
across all 3 spatial scales.

DISCUSSION

Integrating climate adaptation in KM-GBF
implementation

Although there is strong evidence that PAs have protected
biodiversity from land-use disturbances (Watson et al., 2014),
they remain vulnerable to future climate change. Over 50% of
terrestrial PAs globally are unlikely to adequately conserve bio-
diversity in the face of future climate change (Parks et al., 2023).
Our framework’s priority patterns exhibited significant spatial
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CONSERVATION BIOLOGY 11 of 16

FIGURE 5 In China and the Association of Southeast Asian Nations (China-ASEAN) for the 30×30 target under the SSP245 (Shared Socioeconomic
Pathway) scenario: (a) regional, (b) national, and (c) biogeographical gaps in conservation area (gray dots, current protection proportion for each country; blue to red
shading, proportion a country needs to protect to achieve the 30×30 target at each scale; length of colored lines to gray dots, relative size of conservation gap;
countries arranged from top to bottom according to increasing gap size; gray dashed line, 30% protection area target).

distribution differences compared with the results of studies
(Voskamp et al., 2023; Zeng et al., 2022; Zhu et al., 2021)
that did not incorporate future climate scenarios, underscoring
the necessity of integrating climate projections in conservation
planning. Our findings suggest that the 30×30 commitment
could greatly enhance biodiversity conservation and promote

climate-smart spatial planning, but this depends on designing
PA networks that address the vulnerability of biodiversity and
ecosystems to future climate impacts (Hannah et al., 2007; Stral-
berg et al., 2020). Although activities like illegal logging and
pollution can be managed with short-term legislation, climate
change affects entire ecological networks and services, which
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12 of 16 WU ET AL.

FIGURE 6 The challenges faced by countries in China and the Association of Southeast Asian Nations (China-ASEAN) in meeting the 30×30 target at
different scales: (a) mean human footprint (HFP) score in unprotected cells that are a conservation priority, (b) mean population density in unprotected cells that are

(Continues)

 15231739, 0, D
ow

nloaded from
 https://conbio.onlinelibrary.w

iley.com
/doi/10.1111/cobi.70054 by M

ichigan State U
niversity, W

iley O
nline L

ibrary on [05/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CONSERVATION BIOLOGY 13 of 16

FIGURE 6 (Continued)

a conservation priority, and (c) area of the country’s unprotected priorities divided by its per capita GDP and the challenge ranks (maps) of these metrics (higher
ranks indicate greater challenges in bridging conservation gaps) regionally (left), nationally (middle), and biographically (right).

demands flexible, long-term conservation planning (Rosales,
2008; Dobrowski et al., 2021).

Climate-adaptive conservation can generate spillover effects
by enhancing the resilience of natural resources and ecosystem
services, such as agriculture, fisheries, and tourism, which many
communities in China-ASEAN rely on, thereby benefiting both
local livelihoods and regional economies. The conservation
priorities we identified exhibited relatively consistent spatial dis-
tribution across different SSP scenarios (Michalak et al., 2020).
This contrasts with previous global and regional studies that
identified future climate refugia and habitat, where the spatial
patterns often changed significantly with different SSP scenario
climate data. Our findings suggested that our integrated frame-
work, which incorporates climate change vulnerability, species
distribution, and carbon stock, is promising for designing robust
conservation priority models that remain relatively insensitive to
uncertainties in future climate models.

However, translating these insights into actionable policies
under the KM-GBF presents significant challenges. The Draft
Decision on the Monitoring Framework for the KM-GBF,
presented at COP16 in November 2024, revealed limited inte-
gration of climate-change-related metrics and indicators across
its goals and targets. For target 3 (the 30×30 commitment),
existing indicators primarily emphasize static dimensions, such
as the protected connected index, PA connectedness index, and
species protection index, and there is minimal consideration of
dynamic ecological processes influenced by climate change. This
limitation extends to the entire framework, where most climate-
related indicators, aside from the BERI (Ferrier et al., 2020), are
qualitative, binary, and confined to national scales, which limits
their utility in addressing dynamic climate impacts. By contrast,
the indices we propose—integrating climate change exposure,
sensitivity, and adaptation metrics—are scientifically robust,
data accessible, and scalable. These dynamic metrics address
critical gaps and hold significant potential for enhancing KM-
GBF’s indicators, paving the way for a more comprehensive
and adaptive framework that effectively supports biodiversity
conservation under changing climate conditions.

Importance of protection planning

Our results showed that the success of the 30×30 commitment
and the achievement of the expected conservation outcomes
will depend on how effectively countries coordinate conser-
vation efforts and determine spatial priorities. Decisions on
conservation objectives and the design of 30×30 schemes at
different spatial scales significantly influenced the identification
of areas of conservation priority, corroborating results of pre-
vious studies that highlight disparities in spatial priorities across
scales (Eckert et al., 2023; Shen et al., 2023). National strate-
gies were considerably more feasible compared with regional

coordination because planning within a country is far easier
than planning among countries. For regions with vastly different
economic, political, and sociocultural conditions, widespread
comprehensive cross-border actions are unlikely (Mason et al.,
2020). Our results suggest that a transnational coordinating
approach based on biogeographical provinces could lead to
high coverage of conservation feature hotspots and representa-
tion of ecosystem types. Unlike other transnational approaches,
such as those at regional or global scales, our method does
not assign excessively high or nearly unachievable conserva-
tion targets to countries with high biodiversity value, such as
megadiverse countries. Conservation efforts often involve mul-
tiple conservation objectives and stakeholders, ranging from
biodiversity protection and climate change tackling to rights of
Indigenous people and economic development (Wang et al.,
2024; Yang et al., 2020). In addressing such a complex ecolog-
ical and socioeconomic challenge, it becomes evident that the
choice of spatial extent of conservation planning is important
(Carvalho et al., 2019).

Climate change is a global issue with impacts that tran-
scend national borders, necessitating collaborative efforts that
go beyond the capacity of individual countries. Regional pro-
tection coordination offers a pathway to achieve synergies
across administrative and jurisdictional boundaries by con-
necting climate corridors and facilitating cross-border migra-
tion of species. For example, connectivity corridors, such as
the Malaysia–Thailand transboundary corridor linking Taman
Negara and Hala-Bala National Parks, or the China–Laos cor-
ridor connecting Xishuangbanna and northern Laos, provide
practical examples of how transboundary conservation efforts
can enhance connectivity between PAs. These corridors not
only strengthen the resilience of individual PAs but also bolster
the overall resilience of the conservation network by accommo-
dating species migration and mitigating climate change impacts
(Watson et al., 2021). China’s initiative to establish the world’s
largest national park system by 2035 provides a model of
how dynamic conservation strategies—such as connectivity
corridors and climate-informed planning—can simultaneously
support biodiversity conservation and climate resilience at
scale. These approaches are equally applicable to the broader
China-ASEAN region.

Need for an inclusive approach to 30×30

Although safeguarding global biodiversity is a global necessity,
individual countries bear the responsibility of achieving 30×30
in their territories and must make rapid progress to do so in
less than a decade (UNCBD., 2022). However, the sole focus on
increasing PA coverage as a conservation objective is increas-
ingly being met with resistance from Indigenous peoples and
related organizations. By assessing the area of unprotected pri-
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orities in relation to national per capita GDP levels, as well as
the average HFP and population density of unprotected priority
areas, our research highlights the possible challenges countries
may face in achieving the conservation targets outlined in the
KM-GBF across various coordinating scales. Exploration of
diversified conservation mechanisms, such as China’s Ecolog-
ical Conservation Redline (ECRL), which implements varying
levels of conservation measures tailored to specific conserva-
tion priorities to ensure no change in land cover, offers valuable
insights and reference cases for other regions facing similar
challenges (Gao, 2019). China’s ECRL project, proposed by
scientists in 2000 and approved by the State Council in 2011,
covers approximately 30% of China’s land area now. Its man-
agement objectives include maintaining land-cover status quo,
preventing net loss of biodiversity, and avoiding degradation of
other ecosystem services within the ECRL. The management
approaches under ECRL vary, encompassing strictly protected,
minimally disturbed areas, as well as watershed protection zones
permitting some agricultural and limited other human activities.
Faced with conflicts between conservation and development
in the implementation of ECRL, China is exploring large-
scale market-based mechanisms for ecological compensation
payments.

Limitations

We presented a multiscale framework for bridging conserva-
tion gaps under the 30×30 commitment in China-ASEAN and
addressing the dynamic challenges posed by climate change. By
highlighting the importance of integrating climate adaptation
metrics in spatial planning, we demonstrated how coordinated
efforts at regional, national, and biogeographical scales can
enhance PA networks’ resilience and representativeness. Our
framework not only provides a pathway to achieve equitable
and effective 30×30 targets but also offers valuable insights for
broader conservation strategies under the KM-GBF.

Although we focused on China-ASEAN, our workflow the-
oretically can be applied to any country to promote 30×30
planning. However, effective spatial planning relies on modeling
for various conservation objectives. It must be acknowledged
that significant data biases may still exist. For instance, we
did not assess the extent of extrapolation in species distribu-
tion modeling with MaxEnt’s MESS tool (Elith et al., 2010),
which we will do in future work to improve projection accu-
racy. Although we provided a regional-scale assessment of
climate change vulnerability, our focus was on nonspecies-
specific regional vulnerability to climate change, rather than
species-level or ecosystem vulnerability, in terms of biotic ele-
ments (Nicholson et al., 2021). Although we covered multiple
conservation features highlighted in the KM-GBF, includ-
ing biodiversity, ecosystem services, climate change, human
impacts, and connectivity, we did not consider multiple dimen-
sions of biodiversity, such as taxonomic diversity, functional
diversity, and phylogenetic diversity (Jetz et al., 2022). More
work is required to determine how multidimensional biodiver-
sity priorities contrast with other 30×30 priorities. Additionally,

biodiversity in PAs may be affected by human activities in- and
outside PAs, whether nearby or far away. The integrated frame-
work of metacoupling can help address such challenges and
improve the design of the 30×30 priorities (Liu, 2023).
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