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Mixedeffectiveness of global protected areas
in resisting habitat loss

Guangdong Li 1,2, Chuanglin Fang 1,2 , James E.M.Watson 3, Siao Sun 1,2,
Wei Qi 1,2, Zhenbo Wang 1,2 & Jianguo Liu 4

Protected areas are the cornerstones of conservation efforts to mitigate the
anthropogenic pressures driving biodiversity loss. Nations aim to protect 30%
of Earth’s land and water by 2030, yet the effectiveness of protected areas
remains unclear. Here we analyze the performance of over 160,000 protected
areas in resisting habitat loss at different spatial and temporal scales, using
high-resolution data. We find that 1.14 million km2 of habitat, equivalent to
three times the size of Japan, across 73% of protected areas, had been altered
between 2003 and 2019. These protected areas experienced habitat loss due
to the expansion of built-up land, cropland, pastureland, or deforestation.
Larger and stricter protected areas generally had lower rates of habitat loss.
While most protected areas effectively halted the expansion of built-up areas,
they were less successful in preventing deforestation and agricultural con-
version. Protected areas were 33% more effective in reducing habitat loss
compared to unprotected areas, though their ability tomitigate nearby human
pressures was limited and varied spatially. Our findings indicate that, beyond
establishing new protected areas, there is an urgent need to enhance the
effectiveness of existing ones to better prevent habitat loss and achieve the
post-2020 global biodiversity goals.

The Anthropocene1,2 has resulted in a dramatic loss of biodiversity and
even potentially a sixth mass extinction event3–5. Habitat loss, degra-
dation, and fragmentation caused by anthropogenic activities are the
critical factors inducing an unprecedented decline in biodiversity6–8.
Establishing and expanding protected areas (PAs) have been the key
instruments usedbynations to alleviate and reverse biodiversity loss, as
PAs are seen as the backbone of global conservation efforts9,10. This has
resulted in rapid growth of the global network of PAs, which currently
cover about 16.64% of Earth’s land surface and 7.74% of the marine
realm11. The newly adopted Kunming-Montreal Global Biodiversity
Framework further calls for 30% of the world’s land and water to be
PAs12,13. This is an ambitious goal, but simply expanding PAs cannot
guarantee biodiversity conservation10. Given the crucial importance of
addressing biodiversity loss for human well-being, biodiversity

conservation efforts in the next decade must be implemented through
the most effective conservation strategies and actions.

Some studies have shown that many individual PAs slow habitat
loss14 and stop land clearing15. Moreover, it is generally recognized that
biodiversity will likely be better protected from human activities after
an area has been designated as a PA16. There is no doubt that well-
managed PAs can conserve biodiversity17. However, habitat loss and
human encroachment, especially those due to urbanization18, con-
version to cropland19 and pastureland, and deforestation20 have been
found to occur inside the boundaries ofmany PAs, and thesepressures
are still the greatest threat to terrestrial biodiversity loss21. A recent
comprehensive assessment revealed that one-third of global PAs are
under intense human industrial-level pressure22. The encroachment of
anthropogenic land use on natural habitats, which has caused habitat
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loss, degradation, fragmentation23, and loss of ecosystem integrity24

and functional connectivity25, continues to undermine the function-
ality and effectiveness of PAs in preventing biodiversity loss. There-
fore, doubts about the effectiveness of the overall PA estate are
growing26.

Given the importance of PAs for halting biodiversity loss, it is
crucial to continue to generate datasets and methods of quantifying
their effectiveness, taking advantage of up-to-date data and advanced
analytical techniques10,22,27. However, despite the apparent relationship
between human activities, habitat loss, and biodiversity decline,
assessing the effectiveness of PAs is challenging because biodiversity
response to PA conservation efforts is difficult to measure. Recent
advances in remote sensing over the past few decades have provided
the capacity tomonitor the long-termhabitat changes in the PAs27, and
assessments of PA effectiveness in resisting human pressure have
received increasing attention in recent years15,28–31. However, most
previous studies have focused on a single type of habitat alteration,
such as deforestation20 or conversion to cropland19. There is a lack of
comprehensive, multidimensional, and systematic assessments of PA
effectiveness, with the few existing comprehensive assessments10,22

not fully capturing the high-resolution dynamic changes in habitat
within PAs. This is largely because these assessments rely on coarse
resolution data (e.g., 5 arcmin10 and 1 km19,20), which introduces
inherent and large uncertainties in habitat change estimates due to
mixed pixel issues32. Moreover, coarse spatial resolution data that is
often used in PA effectiveness studies cannot adequately capture
habitat dynamics within numerous small-scale PAs (such as < 1 km2)
worldwide, and these places are simply ignored despite often being of
biodiversity conservation importance. Among the more than 160,000
protected areas involved in this study, sizes range from 900m2 to
5 km2, encompassing ~ 128,000 individual protected areas.

In addition,most existing effectiveness assessments have focused
only on the spatial performance of PAs (comparison of effectiveness
between protected and non-protected areas in preventing habitat
loss), without examining their temporal effectiveness over the long
term22. A comprehensive assessment of temporal and spatial effec-
tiveness will better capture their actual effectiveness33. This is mainly
because the establishment of PAs is not entirely random, and there
maybe significant differences in the initial habitat loss stateswithin the
PAs, which can lead to inherent uncertainty in the evaluation of PA
effectiveness. Furthermore, earlier studies have insufficiently explored
the distinct heterogeneity of PAs, and have not thoroughly analyzed
the determinants of their effectiveness in an integrated and broad
framework that considers crucial elements such as the establishment
time of the PA, governance type (indigenous and community vs. gov-
ernment), biodiversity importance, the distance from cities, and the
human footprint within and beyond the boundaries of the PA. This
understanding of why certain PAs are effective and why others are not
is critical when considering the global 30× 30 agenda.

Here we provide a comprehensive, multidimensional (temporal
and spatial assessment), and systematic assessment of long-term
habitat loss in over 160,000 protected areas using high-resolution
satellite data (30-m resolution). Using these data, we estimated the
spatiotemporal effectiveness of global PAs in resisting habitat loss. To
our knowledge, no other assessment has incorporated such a broad
range of habitat loss types in PAs globally at this high spatial resolution.
We focused on four types of natural habitat loss: conversion to (i) built-
up land, (ii) cropland, (iii) pastureland, and (iv) deforestation, due to
their prevalence. Moreover, to reduce double counting and land use
classification errors, we also combined these four types of habitat loss
between 2003 and 2019. We first investigated the dynamics and pat-
tern of habitat loss in the PAs. To understand the changes in PA
effectiveness over time, we used a causal effectmodel34 to estimate the
performance of designated PAs at resisting habitat loss. Spatially, we
compared habitat loss inside and outside the PAs based on different

buffer zones crossing the boundaries of PAs. Moreover, we also used a
non-experiment matching approach to further quantify the spatial
performance of PAs in resisting habitat loss by comparing random
sampling sites inside the PAs and matched unprotected sites. We
focused on the heterogeneity of spatial effectiveness at the site (PA),
ecoregion, and biome scale. We also applied the integrated framework
of metacoupling35 (human-nature interactions within a PA as well as
between the PA and other places such as cities near and far) to
understand factors influencing the PA effectiveness. The framework
provides a theoretical conceptual foundation for our quantitative
analysis. It treats a PA as an ‘open system’ and allows for an assessment
of the impacts of human activities both within a PA and in the PA’s
immediate surroundings and distant regions. In other words, the fra-
mework enables us to have a more comprehensive understanding of
the effectiveness of PAs beyond those limited to internal factors. Thus,
our quantitative analysis integrates both internal factors (e.g., estab-
lishment time of the PA, governance type) and external factors such as
the PA’s distances to different land uses and cities. The results can help
develop more effective strategies for PA management than just con-
sidering internal factors.

Results
Prevalent habitat loss in global protected areas
The prevalence of global habitat loss from our analyses indicates that
PAs have not been effective in curbing habitat loss within their
boundaries. We combined four types of habitat loss in PAs between
2003 and 2019 (see Supplementary Figs. 1 and 2a–d) and found that
global PAs had experienced a rapid growth of habitat loss. Total habitat
loss was 405,930 km2 in PAs designated before 2003, covering 2.94% of
the total PA area and distributing in 46,341 PAs (Supplementary Data 1).
However, by 2019, this area increased to 1,142,861 km2, covering 5.55%
of the total PAarea, andwas scattered in 118,002PAs (72.78%of the total
number of PAs). Even PAs in the core of the Amazonian forests, which
are considered to be among the most pristine wilderness areas on the
planet36, were not free fromhabitat loss (Fig. 1a). Moreover, PAs located
in areas that have already experienced a high degree of humanpressure
underwent a high percentage of habitat loss. Approximately one-third
of PAs in Europe and the United States (33.8% and 31.4%, respectively)
experienced > 10% habitat loss (Fig. 1b).

Moreover, newly established PAs in recent decades have not been
effective tools to curb habitat loss compared to longer established
ones (the percentage of habitat loss is 6.43% for PAs established after
2010, compared to 5.45% for PAs established before 1990), and some
PAs have even been established in areas in the middle of human
activities and pressures (Supplementary Fig. 3a–j). We found that PAs
with strict biodiversity conservation targets (IUCN categories I and II)
had a significantly lower proportion of habitat loss (4.0%) than non-
strict PAs (IUCN categories III-VI), which exhibit a habitat loss rate of
8.0% (Kruskal-Wallis test χ2 = 1078.7, P < 0.01). Small PAs (the smallest
25% of all PAs) weremuchmore likely to have lost a high proportion of
habitat (16.4%) than large PAs (the largest 25% of all PAs; habitat loss
proportion = 5.9%; Kruskal-Wallis test χ2 = 4627.5, P < 0.01).

Deforestation and conversion to cropland, pastureland, and built-
up land accounted for 42, 32, 24, and2%, respectively, of all habitat loss
areas in PAs between 2003 and 2019. The highest percentage (53%,
n = 85,637) of the total number of PAs were affected by deforestation,
followedby cropland (38%,n = 60,577), built-up land (24%,n = 38,630),
and pastureland (14%, n = 22,921). A small portion of PAs (6% and
n = 9,050) have four types, 17,782 PAs (11%) have three types, 31,325
PAs (19%) have two types, and 59,955 PAs (37%) have one type,
respectively (see Fig. 1c). Moreover, we found a “linkage effect” in
habitat loss, that is, the habitat loss of two types sometimes occurs
synchronously. Four types of habitat loss areas in PAsweremoderately
correlated (Pearson’s r ranged from 0.39 to 0.52, P <0.01, see Sup-
plementary Data 2).
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Fig. 1 | Habitat loss in protectedareas. aCombinedhabitat loss areaof theworld’s
terrestrial PAs, due to four types of habitat loss (built-up land, cropland, pasture-
land, and deforestation) between 2003 and 2019. b Proportion of habitat loss
within each PA. cNumber of typesof habitat loss in PAs.d Long-termchanges in the

proportion of habitat loss within PAs. The global maps were created using ArcGIS
Pro v3.2 software, and the country boundary data is sourced from https://www.
naturalearthdata.com/. Source data are provided as a Source Data file.
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In addition, we found that the four individual habitat loss types in
PAs show high heterogeneity. The proportion of built-up land in PAs
has increased from 0.03% to 0.18% between 1972 and 2019 (Fig. 1d;
Supplementary Data 1). Surprisingly, the annual growth rate of the
built-up land in PAs between 1972 and 2019 was 4.34%, which was
substantially higher than the global average growth rate outside PAs
(3.40%). Similarly, the proportion of cropland in the PAs increased
from 1.35% to 1.74% between 2003 and 2019 (Fig. 1d and Supplemen-
tary Data 1). In addition, between 2003 and 2019, cropland area within
29,545 PAs established before 2003 expanded by 19.05%, considerably
higher than the global level of 9%37. Likewise, we found that pasture-
land in PAs established before 1992 covered 1.21% of the total PA, but
by 2020, this had increased to 1.38% of the total PA (Fig. 1d and Sup-
plementary Data 1). From 1992 to 2020, the proportion of pastureland
area in PAs to the global total area of pastureland increased from3.64%
to 9.81%. The accelerating global forest loss in PAs is even more
alarming. We found that the cumulative forest loss area in the PAs was
558,142 km2 between 2001 and 2020, which accounted for 13.57% of
the total area of global forest loss.

Temporal effectiveness of protected areas
Based on the synthetic difference-in-differences (SDID) model (Meth-
ods), we found that the effect of PA establishment on the annual growth
of built-up land in PAs (in terms of both area and proportion) was
significantly negative for almost all PA groups (11 groups, see Fig. 2),
which implied thatmost PAs have been effective in halting built-up land
expansion in PAs. Across the total sample of PAs with designated status
information in 2019 (n = 26,361), we estimated an average reduction in
the area (1.72 ha) and proportion (0.21%) of built-up land in PAs after
their designation (Fig. 2a, b, k and Supplementary Data 3). Surprisingly,
we found no significant difference in the expansion of built-up land
between strict PAs and non-strict PAs, even though strict PAs do not
perform as well as non-strict PAs in preventing the proportion growth
of built-up land in the PAs. Larger PAs are more effective than smaller
PAs in restraining the growth of the built-up land area in PAs, whereas
smaller PAs are clearly more effective than larger PAs in curbing the
proportion of built-up land growth. Because small PAs have a smaller
total area than large PAs, a relatively small expansion of built-up land in
smaller PAs could trigger a rapid increase in the proportion of built-up
land. Thus, it appears that small PAs are effective in restraining human
disturbance. Across different continents, the PAs in South America and
Asia have the best performance in preventing the growth of built-up
land area and proportion, respectively. However, PAs in North America
and Oceania are not successful in halting built-up land area expansion,
and PAs in Oceania are not effective in reducing the proportion of
growth. This also implies that the effectiveness of PAs is not constant
throughout the world and that it is important to restore the function-
ality of these ineffective PAs. At the country level, we found that several
European countries (e.g., Austria, Italy, Finland, and France) have PAs
that showgood performance (see Supplementary Data 4). In traditional
understanding, Europe is considered tohave highhuman activity levels.
This suggests that human governance can play an important role in the
effectiveness of PAs. This type of governance can be a useful reference
and promotion value for developing countries.

Most PAs exhibited poor performance in halting cropland
expansion (Fig. 2c, d, k), but there are a few exceptions. We found that
smaller PAs are effective in limiting the area growth of cropland.
However, larger PAs show good performance in restricting the pro-
portion growth of cropland in PAs, resulting in an average decrease of
0.43%. The PAs in North America, especially in the United States,
showed excellent performance in preventing cropland expansion. On
average, we observed a reduction of 12.8 ha in area and 3.04% in the
proportion of cropland per PA in North America after the designation
of the PAs (Supplementary Data 3). However, the overall effectiveness
of PAs in curbing cropland expansion is not encouraging. Increasing

demand and pressure on land for food production may result in the
penetration of PAs and the degradation of their internal natural habi-
tat. Consequently, PAs will experience more pervasive trade-offs
between biodiversity conservation and food security. As with crop-
land, PAs are generally ineffective in limiting pastureland expansion
(Fig. 2e, f, k), and most designated PAs have even accelerated pas-
tureland growth across many groups and regions. However, a notable
exception is Asia, where the establishment of PAs has significantly
contributed to a reduction in the area and proportion of pastureland
within PAs (average ATT= − 323 ha and − 1.82% per PA). At the country
level, Denmark and Chile have shown outstanding performance, while
Estonia has experienced rapid growth of pastureland in PAs (average
ATT = 24.7 ha and 10.67% per PA, Supplementary Data 4). Importantly,
PAs have not been an effective policy tool for the restriction of forest
loss, especially in limiting area expansion of forest loss. Our results
suggest that all groups of PAs experienced a significant increase in
forest loss area (except for four non-significant groups with P > 0.1,
Fig. 2g, h, k), and some PAs have even acted as a catalyst for the
exacerbation of forest loss (Supplementary Fig. 4a–d). Regarding the
proportion of forest loss, PAs in IUCN categories III-VI (ATT = −0.52%,
P =0.03) and PAs in North America (ATT = −0.12%, P < 0.01) and
Oceania (ATT = − 3.88%, P <0.01) have been effective at inhibiting
accelerated forest loss within PAs. However, at the country level, few
countries have shown good performance (except for Ghana and
Japan). PAs are also ineffective for stopping the expansion of com-
bined total habitat loss in terms of absolute area (Fig. 2i, j, k), and small
PAs (the bottom 25% in size) are only marginally effective. In some
cases, the establishment of PAs has even exacerbated overall habitat
loss areas, especially in Africa (average ATT = 16.89 ha) and South
America (average ATT = 7.40 ha). However, PAs have had a significant
effect on curbing increases in the proportion of total habitat loss,
especially for PAs in Europe and North America and for small PAs.

Our findings reveal that PAs exhibit time lags of 1–6 years in
persistently restraining habitat loss. Furthermore, we found that this
time-lag effect varies across different types of human disturbance
(Supplementary Data 5). Assuming a one-year lag in the establishment
of PAs, we found that PAs are significantly effective in restricting built-
up land expansion. We consistently observed six-year temporal lags in
the effectiveness of PAs in curbing the rise in cropland proportions
within their boundaries. We found that PAs exhibited a similar lag
effect in their limitation of the growth of combined total habitat loss as
a proportion, lasting up to 5 years after the establishment of PAs. This
suggests that the performance of PAs may not be immediately
apparent. A similar temporal delay in the effect of PAs was also found
in the proportion (but not the absolute area) of pastureland expansion
3–6 years after PA establishment. Nevertheless, the time-lag effect of
PAs on restricting growth in the proportion of forest loss occurred
more rapidly (1–2 years after the PAs were established). Overall, our
results indicate a pervasive time-lag effect of PA establishment, a
process that has been often overlooked in previous assessments of PA
effectiveness. This suggests that the establishment of PAs does not
necessarily produce timely effects and that well-functioning PAs may
require long-term operation and management.

We delved further into the investigation of the heterogeneity of
this lag effect across different continents and between strict and non-
strict PAs (Supplementary Data 6). Our findings reveal that PAs in
NorthAmerica, Europe, andunder non-strict protection exhibit amore
pronounced time-lagged effect in relation to the total habitat loss.
Surprisingly, PAs in North America demonstrate significant efficacy in
curbing the growth of built-up areas and croplandwithin their bounds,
even with a lag of six years. In addition, PAs in Asia and those under
non-strict protection alsomanifest this effect in curbing the increase in
cropland within their boundaries. However, this lag effect is less
observed for pastureland and forest loss. Notably, PAs under strict
protection do not exhibit this effect. The observed lag effect in global
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PAs’ effectiveness in curbing habitat loss provides several policy
implications. Establishing PAs proactively and promptly is vital to
effectively mitigate habitat loss before it becomes severe. Tailoring
strategies to regional specifics, such as climate, biodiversity, and socio-
economic factors, enhances the effectiveness of these areas. The bal-
ance between strict and non-strict conservation measures should be
carefully considered, recognizing that flexible approaches can some-
times yield significant benefits, especially in regions where strict con-
servation might be impractical. Long-term monitoring and adaptive
management are crucial, as the impacts of conservation efforts on
habitat loss may not be immediately apparent. This involves regular
assessment and thewillingness to adjust strategies basedonecological
changes and evolving scientific understanding.

We, therefore, examined the variation in the temporal effective-
ness of existing PAs against five criteria: the establishment time of the
PA, governance type (indigenous and community vs. government), the
importance of biodiversity, the distance to cities, and human footprint
(Fig. 3). We used proportion changes in combined total habitat loss in
PAs to represent habitat alteration.

We found that earlier established PAs are more effective in
curbing the overall loss proportion of habitat over the time period
assessed (Fig. 3a). The ATT values for PAs established before and after
2010 were −0.67% and −0.48%, respectively. This implies that to
achieve the 30 × 30 agenda, it is crucial to act promptly, and the longer
the establishment time, the more likely the PA will become effective.
This is potential because only after the establishment of PAs can there

Fig. 2 | Effects of designated PAs on retarding habitat loss. ATT is the “average
treatment effect on the treated” of PAs, namely the estimated annual average effect
of established PAs on retarding the area and proportion of habitat loss in PAs,
including the area and proportion of built-up land (a and b n = 26,361), cropland
(c anddn = 19,221), pastureland (e and fn = 52,507), forest loss (g andhn = 38,692),
and combined total habitat loss (i and j n = 63,394). The total sample encompasses
all the PAs examined in the study. PAs designated as IUCN I-II are those strictly
protected according to the IUCN categories. Conversely, PAs classified as IUCN III-
VI are not under strict protection. The term “Bottom 25% size” refers to PAs within
the smallest 25% in terms of size, representing small-scale PAs. Meanwhile, “Top

25% size”pertains to the largest 25%ofPAs, indicative of large-scale PAs. A summary
of influence direction and significance level were shown in (k). Error bars indicate
95% confidence intervals. For all ATT coefficients of area (a, c, e, g, i), the unit of
measurement has been changed from m2 to ha. Asterisks represent significance
levels: *P <0.1, **P <0.05, ***P <0.01. Exact P-values can be found in Supplementary
Data 3. The absence of an asterisk indicates statistical non-significance. Significant
negative values indicate that the establishment of the PA can significantly reduce
habitat loss, while positive values indicate the opposite. Source data are provided
as a Source Data file.
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be corresponding resource support, and the effectiveness of PAs is not
immediately apparent but requires a long-termprocess.Moreover, it is
essential to recognize that newly established PAs tend to become
“paper parks”, as nations try and achieve numbers of PAs in terms of
area and not outcomes. Moreover, the government type of PAs is an
important factor that affects their effectiveness. Indigenous peoples
and local communities lands are more effective in controlling habitat
loss in PAs compared to government and other entities (ATT were

− 1.52% vs. −0.59%, Fig. 3b). This is potentially because of their deep
understanding of the local environment and traditional knowledge
and practices for sustainable resource use and management38. Their
participation in the management of PAs can help to improve the
effectiveness of conservation efforts and promote the sustainable use
of natural resources38.

We also found PAs currently distributed in regions of high
biodiversity richness and importance have stronger effectiveness in
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Fig. 3 | Differentiated effects of designated PAs on retarding habitat loss.ATT is
the “average treatment effect on the treated” of PAs, namely the estimated annual
average effect of established PAson retarding the proportionof total habitat loss in
PAs between 2003 and 2019. Error bars indicate 95% confidence intervals. Asterisks
represent significance levels: *P <0.1, **P <0.05, ***P <0.01. The absence of an
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Here we consider the multiple heterogeneity of PAs, including the establishment

time of PAs, before 2010 (n = 25,551) and after 2010 (n = 33,448) (a), governance
type: indigenous peoples and local communities’ lands (IPLC, n = 4,210) and gov-
ernment (GOV,n = 51,250) (b), species richness (c), human footprint (d), distance to
cities (e). To further examine the heterogeneity of PAs, we divided the sample PAs
into quintiles (e.g., 20% quantile in (c) represents PAs with the lowest 20% species
richness, n = 59,625). The exact results can be found in Supplementary Data 7.
Source data are provided as a Source Data file.
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preventing habitat loss (Fig. 3c and Supplementary Data 7). One
potential reason for this is that these areas with high species rich-
ness are often far from human activity areas, and the probability of
human disturbance is, therefore, relatively low compared to other
regions. This has been further supported by human footprint data,
which shows that PAs distributed in the top 40% of human footprint
areas do not significantly inhibit habitat loss (Fig. 3d and Supple-
mentary Data 7). In addition, the distance of PAs to cities can pro-
vide a reference for the establishment of future PAs. PAs that are
farther from cities were more effective in significantly curbing
habitat loss, while the effectiveness of PAs near cities is not sig-
nificant (Fig. 3e and Supplementary Data 7). This is potentially
because areas near cities are more likely to be affected by intense
human activities, such as infrastructure construction, urbanization,
industrialization, and tourism, which can lead to habitat loss.
Therefore, it is important to consider the distance from cities when
establishing PAs to maximize their effectiveness in protecting bio-
diversity and habitats.

Effectiveness within and beyond protected area boundaries
To examine the spatial effectiveness of PAs at resisting habitat loss, we
compared the proportion of habitat loss inside and outside each PA
across buffer zones of different sizes inside and outside the PA’s
boundaries. Overall, although most PAs have experienced extensive
habitat loss within their boundaries, they are still more effective at
resisting habitat loss than their surrounding areas, which indicates that
PAs have a substantial inhibitory effect on human pressure. We found
that there was an average of 12.30% difference in the proportion of
habitat loss within the 1 km buffer zone inside and outside the PA
boundary in 2003 (Fig. 4a). Moreover, this difference increased over
time to 13.67% by 2019. Interestingly, the proportion of total habitat
loss peaked in the 2-km buffer zone outside the PA boundary and then
gradually decreased with increasing distance to PA. This suggests that
the 2 km buffer zone outside the PA boundary is an area of potentially

dramatic anthropogenic land use change. This zone faces the most
severe conflict between development and conservation.

We also found that there was substantial variability in the spatial
effectiveness of PAs and different spatial patterns among the four
habitat loss types. From 1972 to 2019, the built-up land proportion
inside the PAs remained less than 0.11%. However, in all 5 km buffers
outside of the PAs, this proportion rapidly increased to a high level,
ranging from 0.84% to 3.88%, especially in areas close to the PA
boundaries (Fig. 4b). Moreover, we found the proportion of built-up
land increased across the buffer zones from the core PAs to sur-
rounding areas, suggesting a “gradient effect”.

The proportion of cropland exhibited a similar spatial distribution
pattern (Fig. 4c). The spatial compression process (rapid growth of
human activities has resulted in the effective area of PAs being smaller
than their geographical extent, resulting in spatial compression)39 near
the boundaries of PAs was apparent in our data. Specifically, the
external buffer zones of PAs are fiercely contested between con-
servation and agricultural development. Cropland proportion showed
stronger growth (by > 10%) in the 1 km buffers outside the PAs than
inside the PAs and continued to steadily increase within the 3 km
buffers outside the PAs, clearly demonstrating the ability of PAs to
prevent the expansion of cropland. However, our data also reveal that
cropland was moving closer to PAs. Such habitat compression will
inevitably affect the connectivity and integrity of ecosystems and,
consequently, further undermine the overall functioning and stability
of PAs.

From 1992 to 2020, the changes in pastureland proportion
showed an evenmore pronounced pattern.We found that pastureland
proportion was highest in the 1-km buffer outside PAs and then gra-
dually decreased with increasing distance outside the boundary
(Fig. 4d). This suggests that the pressure for pastureland expansion is
stronger in areas closest to PA boundaries. Although PAs are effective,
using PAs to curb human pressures in areas immediately adjacent to
them is ineffective.
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have experienced lower levels of habitat loss than their surrounding areas. The
geographic maps were created using ArcGIS Pro v3.2 software, and the country
boundary data is sourced from https://www.naturalearthdata.com/. Source data
are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-52693-9

Nature Communications |         (2024) 15:8389 7

https://www.naturalearthdata.com/
www.nature.com/naturecommunications


Changes in the proportion of forest loss across PA borders further
confirmed the findings outlined above. We also found that the pro-
portion of forest loss peaked in the 1 km buffer zone outside the PAs
(Fig. 4e). Moreover, differences in the proportion of forest loss
between buffer zones inside and outside the PAs increased annually.
By 2020, these differences exceeded 2%; however, the cumulative
percentage of global forest loss in PAs was only 2.68%. This provides
further evidence for the spatial effectiveness of PAs. Nevertheless, the
areas closest to PA boundaries were hotspots of forest loss.

Globally, within 81.11% of the PAs, the total habitat loss proportion
within the 1 km buffer zone was less than that outside the buffer zone
in 2019 (Fig. 4f). If it were not for the rigid spatial constraints imposed
by PAs, the loss of habitats could be greater and more widespread,
especially in regions where there is a serious conflict between devel-
opment and conservation (Fig. 4g). However, 15.69% of the PAs
showed ineffectiveness, with a higher habitat loss proportion within
the 1 km buffer zone than outside. The remaining 3.20% showed no
substantial difference between the inside and outside of the buffer
zone. This indicates that there is still a certain number of PAs that are
not as effective as we anticipated.

Differentiated spatial effectiveness of protected areas and its
implications for 30 × 30 agenda
Nations that have committed to the Kunming-Montreal Global Biodi-
versity Framework aim to designate 30% of Earth’s land and water
areas for protection by 2030. Given this ambition, an urgent need is to
identify where setting up PAs will be most effective38. The current
effectiveness assessment of PAs may provide a reference for this
purpose. We therefore examined the heterogeneity of the spatial
effectiveness of existing PAs at the PA scale, the ecoregion scale, and
the biome scale, using a large-scale spatial sampling (~ 1.05 million
grids in PAs) and the Propensity Score Matching (PSM) method. We
used proportion changes in combined total habitat loss, built-up land,
cropland, pastureland, and forest loss in PAs to represent habitat
alteration.

We found significant habitat loss rate differences between PAs
andmatched unprotected areas (Fig. 5a–e), with 71.45% sampling grids
(749,879 / 1,049,468) in PAs having less habitat loss rate thanmatched
unprotected grids. Estimated average habitat loss rates in PAs were
4.20, 0.08, 2.54, 0.38, and 1.20% lower than in similar unprotected
areas for total habitat loss, built-up land, cropland, pastureland, and
forest loss, respectively (all P <0.01, see Supplementary Data 8). It
suggests that global PAs have the potential to reduce habitat loss rates
by approximately 33.08, 27.69, 52.57, 9.49, and 33.55% for total habitat
loss, built-up land, cropland, pastureland, and forest loss, respectively.
PAs are particularly effective in curbing cropland expansion and
deforestation. However, this effectiveness hides considerable type and
spatial variation.

Indeed, PA type is closely related to its conservation effectiveness.
Our analysis revealed that the Strict Nature Reserves (IUCN Ia cate-
gory) have performed the best, followed by the Natural Monuments
(III) and the National Parks (II), whereas the Wilderness Areas (Ib) did
not show the expected effectiveness (Fig. 5f). This is likely due to
significant losses of wilderness that have occurred in the past two
decades, primarily driven by increasingly severe human
disturbances40. Other types of PAs (IV, V, andVI) doperformworse. Yet
in terms of curbing cropland expansion in PAs, non-strict PAs perform
better. We also found the indigenous territories PAs have the best
effect in curbing habitat loss, followed by strict protected PAs (Ia, Ib,
and II), sustainable use PAs (III, IV, V, and VI), and local communities
conserved areas (Fig. 5g).

Spatially, PAs in southern Saharan Africa, the Amazon Basin,
Europe, Central America, the central and southeastern United
States, Central Asia, and Southeast Asia have lower effectiveness.
Yet PAs in the Amazon Basin, North Africa, West Asia, central and

northwestern Australia, China, and the Far East have higher effec-
tiveness. In Africa, PAs along the Gulf of Guinea, Eastern, and
Southern Africa, and Madagascar do not show effectiveness com-
pared to unprotected samples (Fig. 5a). This is mainly because
these PAs have experienced the highest proportion of threats from
cropland expansion, followed by forest loss and pastureland
(Figs. 5c–e, 6). With the future population of Africa expected to
further increase, there may be apparent trade-offs between food
security and ecological conservation41. Moreover, sustainable use
PAs and areas conserved by local communities were the pre-
dominant types of PAs with low effectiveness in these regions
(Supplementary Fig. 5). At the same time, the surrounding areas of
the Amazon Basin are also globally noteworthy as low-efficiency
PAs. The expansion of pastureland and rapid loss of forests are the
main threats to the effectiveness of PAs in this region (Fig. 6).
However, Indigenous territories and strict PAs in the Amazon Basin
have indeed shown excellent conservation performances, espe-
cially Indigenous territories in curbing forest loss (see Fig. 5 and
Supplementary Fig. 6). The effectiveness of PAs faces the greatest
challenges in Europe, which has the most widespread distribution
of low-efficiency PAs globally, and also the widest range of threats
(Supplementary Fig. 7). PAs in this region have experienced
extensive expansion of forest loss and cropland (Fig. 6), which
largely due to Europe that faces the greatest pressure of habitat
loss globally (the total habitat loss rate for the matched unpro-
tected grids is as high as 21.67%, habitat loss pressure is defined as
the rate of habitat loss that would have been expected within the
boundaries of a PA had it not been protected [counterfactual]).
Similarly, PAs in North America have also not been as effective as
expected, with poor performance in Central America and the
Central and Southeastern United States. These regions are widely
threatened by the expansion of cropland and forest loss (Fig. 6),
especially for sustainable use PAs (Supplementary Fig. 8). It is
worth noting that the proportion of PAs in North America affected
by built-up land expansion is the highest in the world (15%). Fur-
thermore, some PAs in Central Asia and Southeast Asia also
exhibited low conservation effectiveness. Yet PAs in Central Asia
are more affected by the expansion of pastureland, whereas those
in Southeast Asia encounter more substantial challenges related to
forest loss (Fig. 5 and Supplementary Figs. 9, 10). Indeed, the
analysis of the spatial effectiveness of global PAs holds significant
implications for achieving the 30 × 30 targets outlined in the Glo-
bal Biodiversity Framework by 2030. It offers insights into the
strengths and weaknesses of ongoing conservation efforts, high-
lights areas where conservation strategies are effective, and pin-
points areas in need of improvement.

We aggregated estimates of PA effectiveness at the ecoregion and
biome scales (Fig. 7). Several ecoregions distributed in Asia and South
America exhibited excellent effectiveness of PAs, such as the
Mongolian-Manchurian grassland, Montane Grasslands & Shrublands,
Kazakh semi-desert, Khathiar-Gir dry deciduous forests, Low Monte,
and Humid Chaco (Fig. 7a). However, several ecoregions located in
Southern Africa, Central Asia, and North America do not show good
performance, such as the Kalahari Acacia woodlands, Madagascar
succulent woodlands, Central Asian northern desert, and the Isthmian-
Atlantic moist forests. Low-effectiveness ecoregions in Africa and
Central Asia are mainly attributed to the expansion of pastureland,
while PAs in South America, Europe, and Southeast Asia are more
threatened by forest loss (Fig. 7d, e). Yet PAs in North America are
more affected by the expansion of built-up land and cropland
(Fig. 7b, c). At the biome scale, Temperate grasslands, savannas, and
shrublands, Tundra, Montane grasslands and shrublands, and Deserts
and xeric shrublands have shown excellent performance. However,
tropical biomes have exhibited slightly worse performance. Moreover,
Mediterranean forests, woodlands, and scrub are the only biome
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globally that is ineffective in PA preventing total habitat loss (Fig. 7f).
Forest loss is the primary threat affecting the effectiveness of PAs in
Boreal forests or taiga, Tundra,Mangroves, Temperate conifer forests,
Temperate broadleaf and mixed forests, Tropical and subtropical
moist broadleaf forests, aswell asMontane grasslands and shrublands.
However, for Tropical and subtropical dry broadleaf forests and Tro-
pical and subtropical coniferous forests, the primary threat is pas-
tureland expansion. Tropical and subtropical grasslands, savannas,

and shrublands, Temperate grasslands, savannas, and shrublands,
Mediterranean forests, woodlands, and scrub, and Deserts and xeric
shrublands are primarily threatened by cropland expansion. Only PAs
in the Floodedgrasslands and savannas are primarily threatenedby the
expansion of built-up land. Strict PAs perform well in most biomes,
while most sustainable use PAs are less effective. PAs located in indi-
genous territories have superbperformance inmost biomes except for
Tropical and subtropical coniferous forests and Temperate broadleaf
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Fig. 5 | Habitat loss rate comparison with PAs and matched unprotected areas
at the PA scale. a Rate difference in combined total habitat loss with PAs and
matched unprotected areas. b Rate difference in built-up land. c Rate difference in
cropland. d Rate difference in pastureland. e Rate difference in forest loss. f Rate

differences in IUCN’s protected areasmanagement categories.gRate differences in
aggregated four types of protected areas. The global maps were created using
ArcGIS Pro v3.2 software, and the country boundary data is sourced from https://
www.naturalearthdata.com/. Source data are provided as a Source Data file.
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and mixed forests. However, local communities' conserved areas do
not perform well, even worse than sustainable use PAs.

To further unravel the roots and influencing factors of hetero-
geneous PA spatial effectiveness, we constructed five machine-

learning models to quantify the impact of different influencing fac-
tors on PA effectiveness, including total habitat loss and four specific
types (Supplementary Fig. 11a–e). These final five machine learning
models had R2 values ranging from 0.60 and 0.80 on our independent
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Fig. 7 | Habitat loss rate comparison with PAs and matched unprotected areas
at the ecoregion scale and biome scale. a Rate difference in combined total
habitat loss with PAs and matched unprotected areas. b Rate difference in built-up
land. c Rate difference in cropland. d Rate difference in pastureland. e Rate

difference in forest loss. fRate differences in biomes. The globalmapswere created
using ArcGIS Pro v3.2 software, and the country boundary data is sourced from
https://www.naturalearthdata.com/. Source data are provided as a Source Data file.
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test set, indicating moderate to high explanatory power (see Supple-
mentary Data 9). We found path dependence is an important factor
influencing the spatial effectiveness of PAs, regardless of the overall
habitat loss rate or the four specific types, as the rate of current habitat
loss in PA has consistently been the most important explanatory
variable. This implies that to increase the effectiveness of PAs, the
priority is to curb the proportion of habitat loss within the PAs them-
selves. Subsequently, the main influencing factor is the distance to
habitat loss events within PAs (see Supplementary Fig. 12), indicating
the presence of potential spatial spillover effects of habitat loss within
PAs. Areas that have experienced habitat loss aremore likely to trigger
chain reactions in surrounding areas. Moreover, the baseline human
footprint and forest cover are also important factors, indicating that
the intensity of early human activities and differences in natural
endowments often affect the current effectiveness of PAs. We also
found that the management categories of PAs did not have the
expected level of importance, ranking in the middle in terms of
importance. Population count within PAs has a significant impact on
the built-up land expansion within PAs, but it does not have an evident
influence on other types. For forest loss, travel time to cities is an
important influencing factor. This is because the accessibility to cities
can indicate the distance to markets, and the convenience to markets
is crucial for logging in forests.

Discussion
Our analyses have considerable implications for post-2020 global PA
targets42 and biodiversity conservation in PAs. In terms of spatial
effectiveness, PAs are highly effective in curbing human pressures
compared to surrounding areas and unprotected areas. The majority
of PAs are not “paper parks”15. It is undeniable that PAs are still the
backbone of global biodiversity conservation efforts43. However, we
found that the existing PAs have undergone substantial habitat loss
within their borders. Prevalent habitat loss may undermine the eco-
logical conservation value and cornerstone status of PAs. Over
100,000newPAs have been established since the beginning of the 21st
century, but these new protected areas still exhibit low levels of
effectiveness (as determined by comparing the ratio of built-up land
and pastureland expansion in PAs before 2001 vs. after 2001). The
presence of human activities and habitat loss in many PAs does not
necessarily suggest that these PAs need to be downgraded, downsized,
degazetted44, or defunded22. Instead, as anthropogenic land expansion
in the PAs accelerates, it is critical to reinforce—not roll back—pro-
tection efforts44,45 by upgrading and restoring PAs to increase their
resistance to all threats and disturbances. Prioritizing areas of PAs for
restoration may be one of the most important proactive efforts to
mitigate various types of pressures, such as the conversion of undis-
turbed areas to built-up land, cropland, pastureland, and deforested
areas. In addition, it is necessary to design targeted restoration and
resilience methods for different risks.

Our findings also have important implications for the design and
establishment of newprotected areas through initiatives such as ‘30by
30’46 or ‘Half Earth’47 to sustain global biodiversity conservation48.
Protected areas should be designed to play more practical and critical
roles in minimizing or halting the loss of habitats and species. Ever-
expanding area-based targets must be accompanied by equally ambi-
tious targets to ensure PA effectiveness33. Moreover, our results indi-
cate that spatially, it is no longer possible to rely solely on PAs to resist
rapid habitat loss because the areas surrounding PAs have suffered
higher rates of habitat loss. There is an urgent need to improve the
performance of existing PAs and their surrounding areas and to sustain
the connectivity and integrity of the overall network of PA ecosystems
by establishing safeguard buffer zones around PAs and by conserving
and restoring critical connectivity areas25. We found wide variability in
the temporal and spatial effectiveness of PAs, which implies that dif-
ferent regions need to implement specific improvement and

enhancement measures to address deficiencies in the effectiveness of
PAs, depending on their location and attributes. In addition, given the
temporal lags in PA effectiveness, our results suggest that the long-
term stability and durability of PAs49 should be guaranteed by long-
term investment, management, and proactive land use plans39.

The conflict between conservation and development is a crucial
factor affecting the spatio-temporal effectiveness of global PAs in
resisting habitat loss. We found that more than 200 million people
(including Indigenous peoples and Afro-descendants) live in PAs, and
many of these people are living in poverty (Supplementary Fig. 13).
Thesepeople and their socio-economic activities aredirectly related to
habitat loss in PAs and their surrounding areas. For such a large
population group, displacing and relocating all these people and their
households would be not only unfair and unethical but also
impossible13. Households are basic units of production and con-
sumption, and the number of households has increased faster than the
population50,51 due to factors such as divorce52, resulting in higher
demand for resources. From an equity and human rights perspective,
local people need to be able to pursue their traditional livelihoods.
However, land resources form the basis of their socioeconomic
development, supporting settlements, food production, forestry,
livestock, and other important functions. PAs urgently need to estab-
lish sustainable development and harmonious coexistence between
humans and nature to reduce the trade-off between conservation and
development. In practice, nature-based solutions are essential to
protect and sustainably manage biodiversity and natural ecosystems
by promoting lower-impact land uses and strategically reducing the
risk of biodiversity loss within and near PAs53. It is evenmore critical to
design a coordinated plan to reduce human demand for settlements,
croplands, pasturelands, forest lands, and other resources in PAs49

through land use displacement, compensation funds, and global
assistance. We should ensure that these measures and solutions are
also beneficial for Indigenous peoples and local communities and help
to improve their economic and social well-being13,22. Paying for eco-
system services is one example of such a solution54.

Our findings also indicate that the effectiveness of PAs in resisting
habitat loss differs considerably for different types of habitat loss.
Among the four types of habitat loss examined in this study, PAs are
less effective in halting the expansion of cropland, pastureland, and
forest loss over time than the expansion of built-up land. Each PAmay
have specific weaknesses. Thus, given these multiple pressures, it is
also urgently necessary to enhance the comprehensive effectivenessof
PAs. Moreover, the IUCN PAs category system should be updated to
focus on characterizing actual human activities, human pressures, and
their impacts within PAs rather than simply focusing on management
needs22. It is important to routinely treat each PA as a coupled human
andnatural system,with attention tohuman-nature interactionswithin
a PA, between a PA and adjacent areas (PAs and non-PAs), and between
a PA and distant areas55 under the meta-coupling framework. The
application of this framework effectively highlights its value in offering
a comprehensive understanding of the multi-scale interactions that
shape PA conservation effectiveness. In addition, reducing human
activities in PAs is closely linked to sustainable development. The
world urgently needs a collaborative solution to address these chal-
lenges, which should have comprehensive benefits for biodiversity
conservation, climate change mitigation, economic development, and
human welfare.

Methods
Research design
We comprehensively assessed the effectiveness of PAs in resisting
habitat loss across the globe by focusing on the four most common
types of habitat loss—built-up land, cropland, pastureland, and forest
loss. To avoid double counting, we further combined the four types of
habitat loss based on a global 30-m resolution habitat loss dataset for
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2003–2019. First, we calculated the total area and proportion of
combined total habitat loss and their spatial and temporal patterns in
PAs around the world based on the high-resolution multi-source
satellite data available. Second, to evaluate the effectiveness of PAs
over time, we used a causal inferencemethod (synthetic difference-in-
differences, SDID) to investigate the effects of PA designation time on
retarding habitat loss. Third, to assess the spatial effectiveness of
protected areas at resisting habitat loss, we used the proportion of
habitat loss across different size buffers inside and outside the
boundaries of PAs to compare their differences. Moreover, to reduce
the non-randomness of PA establishment on the spatial effectiveness
of conservation, we also used the Propensity Score Matching (PSM)
model to further evaluate the spatial effectiveness of PAs in inhibiting
habitat loss.

Protected areas data
Data on terrestrial protected areas were obtained from the February
2022 version of the World Database on Protected Areas (WDPA)56. We
excluded point data and used only polygon data in our analysis to
reduce errors. Following the recommended practice guide of the
WDPA (https://www.protectedplanet.net/en/resources/calculating-
protected-area-coverage), we eliminated the PAs that were smaller
than 900m2. To reduce the overestimation of PA coverage, we
resolved overlapping PAs into a single polygon and assigned the
strictest International Union for the Conservation of Nature (IUCN)
category. Thus, we obtained, to our knowledge, the most compre-
hensive coverage of PAs (162,146 PAs) ever compiled (accounting for
67% of all global PAs), including many small-size PAs that are often
overlooked. Our final dataset includedmore than 82% of the total area
of terrestrial PAs. We also acquired the spatial extent of Indigenous
people's and local communities' lands globally from the Landmark
(https://www.landmarkmap.org/) while identifying the PAs covered by
these areas (see Supplementary Fig. 14).

Land use data
We used four datasets to characterize habitat loss (including four
types: conversion to built-up land, cropland and pastureland, and
forest loss) in PAs. These datasets have high spatial resolution and
spatial consistency, which facilitate long-term and fine-scale evalua-
tion. However, overlaying these datasets can lead to double counting
of habitat loss in PAs, particularly since forest loss may lead to con-
version into any of the other three types of habitat loss. To address this
issue, we combined the four types of habitat loss to produce a global
30-m resolution habitat loss dataset for 2003–2019. We used the
2003–2019 time period mainly because the cropland dataset covered
only that period, which was further divided into five shorter time
periods that were not interannual (2000–2003, 2004–2007,
2008–2011, 2012–2015, and 2016–2019). We used the ArcGIS spatial
overlay method to address potential double-counting among these
four datasets. We first decomposed forest loss into different types for
each pixel that overlapped with the other three types of habitat loss.
Then, if therewas an overlapping pixel, wedetermined the final type of
this pixel in order of priority, i.e., built-up land, cropland, pastureland,
and forest loss. This approach effectively prevents the double count-
ing of forest loss and land cover conversions. Finally, we produced a
global 30-m resolution habitat loss dataset for five time periods within
the 2003–2019 timeframe (see Supplementary Figs. 1, 2). We found
that the combined total habitat loss was lower (6% in 2019) than the
simple summation of four separate types of habitat loss. This implies
that calculating the area of different habitat loss types separately in
PAs would result in the double counting of about 6% of the habitat loss
area in 2019 compared to the total habitat loss after combining the
four types.

We used the recently updated 30-m global impervious surface
area data (GISA v2.0)57 to estimate global built-up area distribution

inside and outside the borders of PAs. Impervious surface areas (ISAs)
are mainly artificial structures, including urban and rural buildings,
roads, parking lots, and other affiliated anthropogenic structures.
Impervious surface area is an indicator of the intensity of human
activities and socioeconomic development. Built-up areas do not
support high levels of ecosystem services or provide sustainable
habitats for many species of conservation concern. Urban area
expansion has a profound and intensive impact on habitat and species
loss18,58. The updated GISA v2.0 (https://zenodo.org/records/6476661)
achieves an overall accuracy of 97.89% and captures long-term
dynamics covering the period between 1972 and 2019. It also has
high temporal consistency and high spatial and temporal resolution,
which helps facilitate the detection of subtle changes in built-up areas
within PAs, especially for many small PAs.

To examine habitat loss due to cropland expansion in PAs, we
used a global high-resolution cropland dataset37. The cropland data
was obtained from https://glad.umd.edu/dataset/croplands. At a spa-
tial resolution of 30m, this dataset provides a time series that con-
sistently characterizes the extent of cropland across the globe.
Cropland, as it applies to this dataset, is defined as land used solely for
annual or perennial herbaceous crops. Any land used for woody crops,
permanent pasture, or shifting cultivation was not considered to be
cropland. The croplandmapping was completed by analyzing Landsat
satellite data from 2000 to 2019, which was continuously processed.
Machine learning classificationwas utilized tomap the global extent of
cropland, and the classification models were locally calibrated using
training data collected from high spatial resolution remotely sensed
data that was freely available and collected through visual interpreta-
tion. To improve the accuracy of cropland detection, themapping was
carried out using 4-year intervals (2000–2003, 2004–2007,
2008–2011, 2012–2015, and 2016–2019), rather than annual intervals.
During each 4-year period, an area was considered to be cropland if a
growing crop was observed at any point in the period. Sample vali-
dation showed that this dataset has high accuracy, with an overall
accuracy of 97.5% for global mapping. High accuracy and consistency
are beneficial for detecting cropland changes in PAs around the world.

We created a pastureland dataset using data from the European
Space Agency Climate Change Initiative (ESA CCI) for land cover and
land use from 1992 and 2020. The original ESACCI class (class 130)was
used to identify and classify pastureland. However, the ESA CCI map
does not differentiate between pastureland and natural grassland. To
address this, we followed the approach recommended by Strassburg
et al.59 by incorporating data from the Terrestrial Ecoregions of the
World60 and Gridded Livestock of the World v2.061 datasets to deter-
minewhether eachpixel represented natural grassland or pastureland.
If a pixel was classified as grassland in the ESACCImapbutwas located
within an ecoregion of non-grassland ecosystems and had a cattle
density of 1 head per km2 or greater, it was reclassified as pastureland.
To reduce inconsistency with other datasets, we resampled the
reclassified pastureland data to 30-m spatial resolution. The overall
accuracy of this dataset is 75%.

Forest loss data was obtained from the Hansen Global Forest
Change v1.8 (2000-2020) dataset (https://storage.googleapis.com/
earthenginepartners-hansen/GFC-2020-v1.8/download.html)62. Accord-
ing to this dataset, vegetation that exceeds a height of 5m is classified as
tree cover. Forest loss refers to a disturbance that results in the com-
plete replacement of a forest or a transition from a forested area to a
non-forested one, within the timeframe of 2000 to 202062. Annual for-
est loss is a disaggregation of the total amount of forest loss into yearly
increments.

Synthetic difference-in-differences model
Weused a causal effectmethod, the synthetic difference-in-differences
(SDID) model, to estimate the temporal effectiveness of PAs. This
model was used to estimate the “average treatment effect on the
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treated” (ATT) in panel data, as proposed in Arkhangelsky et al.34,
which complemented the widely used difference-in-differences (DID)
and synthetic control (SC)methods. In nature, SDID is basedon apanel
(group by time) set-up, in which certain units are treated and the
remaining units are untreated. The SDID approach estimates the effect
of the treatment by comparing the difference in pre- and post-
treatment outcomes between the treated units and synthetic control
units. The synthetic control units are selected based on a weighted
function of untreated units (withweights specific to eachunit) andpre-
treatment timeperiod (with time-specificweights). Comparedwith the
DID and SCmodels, the SDIDmodel has higher robustness and avoids
overestimation and underestimation of ATT. Moreover, due to the
advantage of the SC model, this model does not need to satisfy the
parallel trend test. Detailed SDID configurations and procedures are
described in Arkhangelsky et al.34.

SDID estimation requires several variables. For dependent
variables, we used annual proportion and area for four separate
types of habitat loss (conversion to built-up land, cropland and
pastureland, and forest loss) and combined total habitat loss in PAs.
Then we selected a treatment group variable (in this analysis,
groups are PAs), a time variable (different for each of the four
habitat loss types and combined total habitat loss: 1972–2019 for
built-up land, 2003–2019 for cropland, 1992–2020 for pastureland,
2001–2020 for forest loss, and 2003–2019 for combined total
habitat loss), and a binary indicator of treatment (set at 0 before the
PA was designated and 1 after the PA was designated). The panel
based on groups and time must be strongly balanced, as optimal
weights are calculated based on full coverage in the pre-treatment
periods. Inference in SDID is based on bootstrap, jackknife, or pla-
cebo procedures. In this analysis, 50 iterations of bootstrapping
were used. We implemented our analysis in Stata 17, employing the
SDID package63. As SDID is based on a balanced panel of observa-
tions, we first make sure there are no missing values. If there is a
missing value, we will delete this observation. In this analysis SDID
handles a staggered adoption configuration, given that in the period
under study, PA designation occurred in different yearly periods.
We implement the SDID estimator using the bootstrap procedure to
calculate standard errors (default 50 iterations).

To ensure the reliability of the model we chose, we followed the
recommendation of Arkhangelsky et al.34 and compared the perfor-
mance of the SDID and DID models. For the DID estimator, we esti-
mated the average effect of PA designation time on built-up land (we
used the annual proportion and area of built-up land in PAs as an
example, see Supplementary Data 10) based on a csdid model64 (Dif-
ference-in-Differences with multiple time periods). The results show
that the DID model does not pass the parallel trend test (using the
command of the pre-trend test in csdid). This means that if the DID
model is used to analyze data here, it will be biased.

To validate the robustness of our findings, we conducted a pla-
cebo test. We randomly manipulated the establishment time of the PA
to create another treatment group time. Through the placebo test, we
found that our results are robust, as the ATT of both models (we also
used the annual proportion and area of built-up land in PAs as exam-
ple) are not statistically significant, which is significantly different from
our analysis results, indicating that our results are not random (see
Supplementary Data 11).

To examine heterogeneity, we estimated the individual effec-
tiveness of PAs in different groups, including IUCN category (strict I-II
vs. non-strict III-VI), PA size (bottom 25% size vs. top 25%), continents
(six continents with PAs), and countries (countries with more than
100 PAs).

To investigate potential temporal lags, we further examined the
performance of PAs with a lag of several years after their establish-
ment. In practice, we assumed that the performanceof a PA lags by 1–6
years after its designation. Based on this assumption, we created

binary indicators of treatment to estimate the effectiveness of each PA
in restricting habitat loss.

Assessing effectiveness within and beyond protected area
boundaries
In order to investigate the relationship between distances to PA
boundaries and changes in habitat loss over several decades, we
employed a systematic approach. We created buffers at 1 km intervals
inside andoutside the PAboundaries, extendingup to 5 km inward and
outward. Within each buffer interval, we calculated the proportion
change in habitat loss, including five types—total habitat loss
(2003–2019), conversion to built-up land (1972–2019), cropland
(2003–2019), pastureland (1992–2020), and forest loss (2001–2020).
Our analysis aimed to determine the spatial effectiveness of PAs in
mitigating habitat loss and to assess whether changes in effectiveness
were influenced by the proximity to PA boundaries.

Counterfactual matching model
The counterfactual matching method is primarily used to address
causal inference problems by matching the covariates of the treat-
ment and control groups to reduce confounding and obtain reliable
estimates of treatment effects. Here, we employed a site-level
matching approach tomitigate non-random effects arising from the
location bias of PAs and further estimate a more accurate spatial
effectiveness of PAs. We identified the control pixel (1 km2 grid)
outside the PAs matching each treatment pixel (1 km2 grid) within
the PAs, using the most commonly used non-experimental match-
ing method, propensity score matching (PSM) using the Stata ‘tef-
fects psmatch’ command65. The matching was based on five
covariates potentially related to habitat loss within the PAs: eleva-
tion, slope, initial human footprint (1993), travel time to cities, and
tree cover in 2000. We used one-to-four nearest neighbormatching
with calipers of width equal to 0.05 of the standard deviation of the
logit of the propensity score to implement PSM, as this approach
produces good matching results (Supplementary Fig. 15a–c), redu-
ces confounding between treatment and control groups, and allows
for a relatively large sample size. We randomly selected
1,049,468 sample points representing ~ 5% of the area of PA as a
treatment group and obtained a 1 km2 grid for each sample point
(Supplementary Fig. 16a–d). To avoid potential spatial auto-
correlation, we set a minimum distance of 3 km between each
sample point. Similarly, we randomly selected corresponding dou-
ble sample points (2,098,936) outside the PA as the control group.
Then, we resampled the five covariate data to a 1 km2 resolution and
extracted the corresponding data for each sample point. The per-
formance of each sample site was simply averaged to characterize
the performance of the PAs, ecoregions, and biomes.

Identify dominant threats in protected areas
We use the Tabulate Area tool in ArcGIS Pro v3.2 to identify the
dominant threats or habitat loss types in PAs. We defined the largest
proportionof habitat loss typeswithineachPA in 2019as thedominant
threat. At the same time, we report on the second threat to PAs in the
Supplementary information (Supplementary Fig. 17). Using this simple
method, we also aggregated these threats to characterize broader
heterogeneity at the continent and biome levels.

Determinants of success or failure in protected areas
To analyze the factors influencing the effectiveness of PAs, we utilized
the integrated metacoupling framework (e.g., considering influencing
factors both within and outside PAs) and two methods to evaluate
temporal effectiveness and spatial effectiveness. First, we evaluated
changes in total habitat loss within PAs as a measure of integrated
habitat alteration. Subsequently, we investigated the variability in the
effectiveness of existing PAs using the SDID method, focusing on five
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criteria: the PA’s establishment time, governance type (Indigenous and
community vs. government), biodiversity importance, distance to
cities, and human footprint. The establishment time of PAs, sourced
from the WDPA database54, was categorized into two periods: before
and after 2010. In terms of governance, we differentiated between
indigenous peoples and local community-managed PAs and those
managed by governments. Species richness within PAs was calculated
using the Area of Habitat method at a 1 km resolution, taking into
account habitats’ land cover and elevation. This calculation included
8676 amphibians, 11,406 birds, 12,188 mammals, and 12,494 reptile
species, with spatial range maps derived from the IUCN Red List and
BirdLife Data Zone. Human footprint data for the year 1993, a metric
for human activity intensity, was sourced from https://datadryad.org/
stash/dataset/doi:10.5061/dryad.052q5. Additionally, a global map of
travel time to cities was obtained from https://doi.org/10.6084/m9.
figshare.7638134.v3. To further explore the heterogeneity of PAs, we
segmented our sample PAs into quintiles. This categorization was
based on species richness, human footprint, and their distance to
cities, allowing a more nuanced understanding of their varied char-
acteristics. We also separately applied an ordinary least squares (OLS)
model to validate the relationship between the effectiveness of PAs
and factors such as species richness, human footprint, and their dis-
tance to cities (see Supplementary Data 7).

Second, we also used machine learning models to examine the
importance of selected variables affecting PA effectiveness. We
trained five machine learning models to quantify the impact of
different influencing factors on PA effectiveness, including total
habitat loss and four specific types (built-up land, cropland, pas-
tureland, and forest loss). The proportion difference of total habitat
loss and four types of habitat loss in sampling grids between treated
groups and matched control groups (the results of counterfactual
matching analysis) were used as the dependent variables. The
sampling grid is the unit of our analysis. We selected explanatory
variables most relevant to the effectiveness of PAs, including cur-
rent habitat loss proportion (in 2019), distance to habitat loss
events, human footprint in 1993, tree cover in 2000, ecoregion,
elevation, slope, PA IUCN categories, travel time to cities, PA
establishment time, population count, and land use suitability (for
the total habitat loss model, we considered four specific types of
land use suitability). Four land use suitability maps were calculated
using the Future Land Use Simulation Model (FLUS)66. We then
divided the total sample data into a training set and a test set using a
75/25 random split for each type of habitat loss. To enhance the
accuracy of the model, we trained five machine learning approa-
ches, including the Generalized Linear Model (GLM), Distributed
Random Forest (DRF), Gradient Boosting Machine (GBM), Deep
Learning (Neural Networks), and Xtreme Gradient Boosting
(XGBoost). Through model training, the GBM model demonstrates
superior performance compared to the other four algorithms. All
models were run in the R interface linked to the H2O Flow machine
learning environment (http://www.h2o.ai, version 3.46.0.1), with
the default AutoML, model, parameter, and grid search settings.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Thedatasets for conducting the analysis presented here are all publicly
available, including: the updated 30-m global impervious surface area
data (GISA v2.0) (https://zenodo.org/records/6476661); the high-
resolution cropland dataset (https://glad.umd.edu/dataset/
croplands); the ESA CCI land cover data (https://cds.climate.
copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=form); and

the Hansen Global Forest Change v1.8 (2000-2020) dataset (https://
storage.googleapis.com/earthenginepartners-hansen/GFC-2020-v1.8/
download.html). The elevation data are available at https://cgiarcsi.
community/data/srtm-90m-digital-elevation-database-v4-1/. Slope
data were calculated on the basis of elevation data using ArcGIS pro
v3.2 software. The initial human footprint (1993) data are available at
https://datadryad.org/stash/dataset/doi:10.5061/dryad.052q5. The
country boundaries data are available at https://www.
naturalearthdata.com/downloads/10m-cultural-vectors/. The ecor-
egion boundaries data are available at https://ecoregions.appspot.
com/. The population data are available at https://ghsl.jrc.ec.europa.
eu/ghs_pop2023.php. Source data are provided with this paper.

Code availability
The code used for this analysis can be found at: https://osf.io/pbjvf/
(https://doi.org/10.17605/OSF.IO/PBJVF).
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