

# An Assessment of PFAS Exposure in Ecological Receptors at Clark's Marsh

Neil Fuller<sup>1</sup>, David Lee Haskins<sup>1,2</sup>, Michelle Hudson<sup>1</sup>, Abbi S. Brown<sup>1</sup>, Matt Hamilton<sup>2</sup>, Melissa Lech<sup>2</sup>, Youn Choi<sup>2</sup>, Linda Lee<sup>2</sup>, Jason T. Hoverman<sup>2</sup>, Wes Flynn <sup>2</sup>, Christine M. Custer<sup>3</sup>, Paul M. Dummer<sup>3</sup> & Jamie G. Suski<sup>1</sup>
Contact: nfuller@eaest.com

 <sup>1</sup> EA Engineering, Science, and Technology, Inc., PBC, Hunt Valley, MD
 <sup>2</sup> Purdue University, West Lafayette, IN
 <sup>3</sup> USGS, La Crosse, WI.

# , La Crosse, WI.

## **INTRODUCTION & OBJECTIVES**

- Previous studies have demonstrated extensive PFAS contamination of ground and surface water at Clark's Marsh
- Accumulation of PFAS has been demonstrated in some species at Clark's Marsh, including insectivorous birds, fish, and crustaceans<sup>(1), (2)</sup>
- PFAS exposure in less commonly studied species such as reptiles is unclear
- This poster presents a synthesis of several independent research efforts at Clark's Marsh measuring PFAS in abiotic media and ecological receptors including aquatic reptiles, birds, and invertebrates



**Fig. 1** Foam present in Van Etten Lake (top) and Clark's Marsh health advisory (bottom)

#### METHODS & STUDY SPECIES

 Sampling of abiotic media including soil, sediment, surface water was conducted in summer 2023 (Fig 2).

- Invertebrate prey items, house wren and tree swallow nestlings collected in summer 2023 (Fig 3).
- Reptiles including painted turtle, common snapping turtle, northern watersnake, and garter snake (Fig 3, collected in 2021 and 2022, with plasma, liver, and muscle analyzed for PFAS



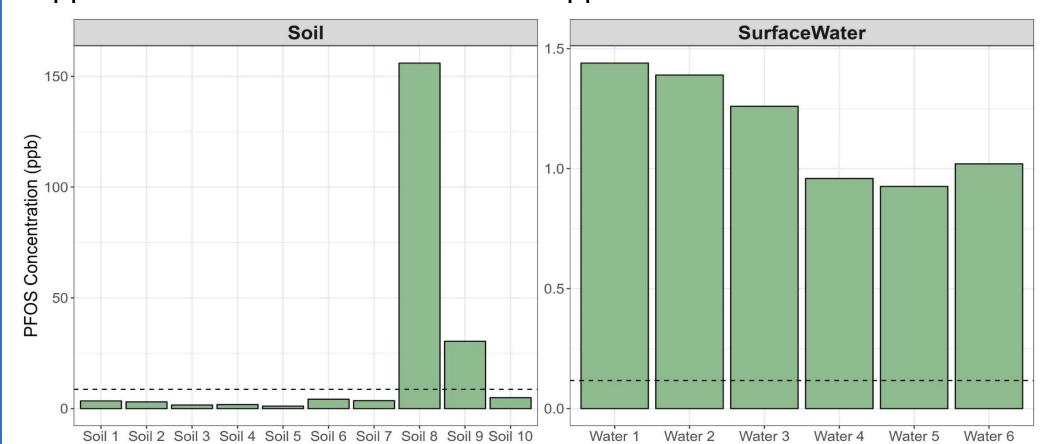
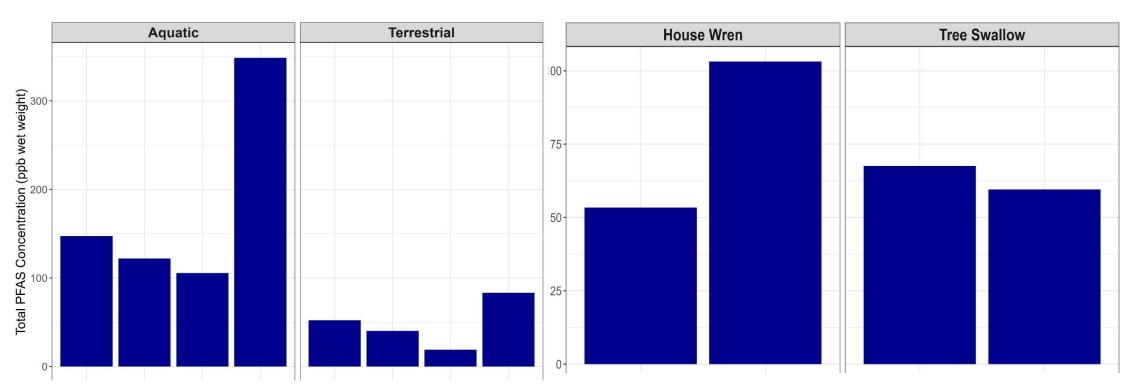

**Fig. 2** Location of abiotic sample collections in 2023. Soil, surface water, and sediment are indicated.



Fig. 3 Study species collected from Clark's Marsh and analyzed for PFAS.

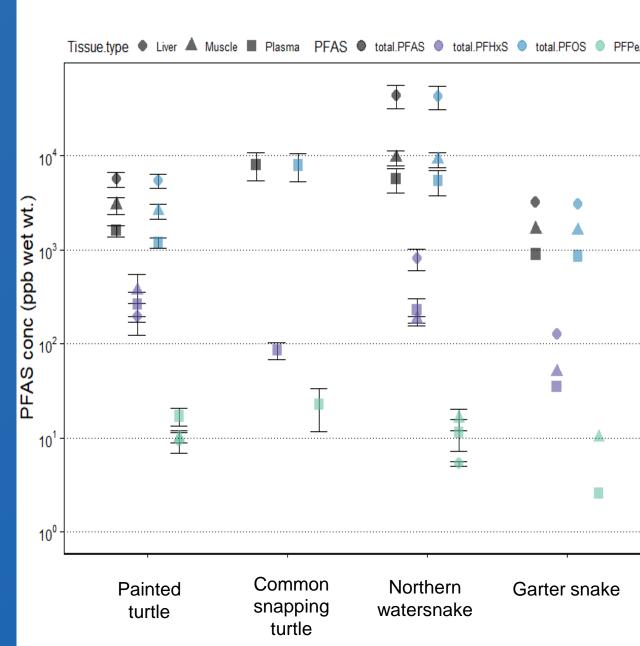
### PFAS IN ABIOTIC MEDIA

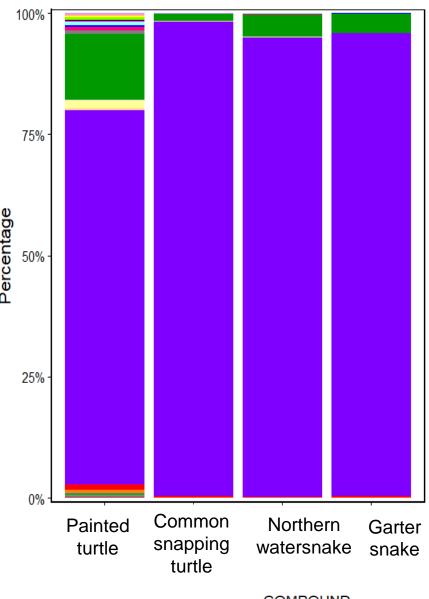

- Large spatial gradients in total PFAS concentrations were observed in soil
   (3.68 184 ppb dry weight) and sediment (7.46 1,555 ppb dry weight)
- PFOS surface water concentrations at all sites exceeded ecological screening value of 0.117 ppb for aquatic-dependent mammals from Grippo et al. (3) (Fig 4).
- PFOS concentrations in soil (2/10 sites) exceeded screening value of 8.7 ppb for terrestrial mammals from Grippo et al. (3)



**Fig 4.** Comparison of PFOS concentrations in soil (dry weight basis) and surface water at Clark's Marsh to screening values from Grippo et al. <sup>(3)</sup>, represented by the dashed line.

#### PFAS IN INVERTEBRATES & INSECTIVOROUS BIRDS


- Total PFAS concentrations were higher in emergent aquatic invertebrates compared to terrestrial (Fig 5).
- House Wren and Tree Swallow nestlings had total PFAS concentrations in whole carcasses ranging from 53.4 – 103 ng/g wet weight, lower than previously reported concentrations for tree swallows at Clark's Marsh<sup>(1)</sup>
- PFOS (88-94% of total), PFOSA (0-14% of total), and PFHxS (4.4-18% of total) were the dominant compounds in bird and invertebrate tissue




**Fig. 5** Total PFAS concentrations in invertebrate prey items (left), house wren, and tree swallow nestling whole carcasses (right). All concentrations are on a wet weight basis.

#### **PFAS IN REPTILES**

- PFOS was consistently the most prevalent PFAS in reptiles. Painted turtles had different PFAS profiles relative to obligate carnivores (Fig. 6)
- Snapping turtles and watersnakes had the highest total plasma PFAS among all species (Fig. 7)
- Markedly high PFAS concentrations relative to other fauna at the site





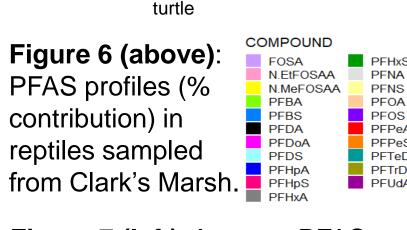



Figure 7 (left): Average PFAS concentrations (ppb, wet weight) in liver, muscle, and plasma collected from reptiles at Clark's Marsh.

Additional samples from reptiles (n = 22) collected in 2022 will be analyzed in FY25-FY26 for PFAS.

#### **SUMMARY**

- PFOS concentrations in soil and surface water at Clark's Marsh exceeded screening levels for terrestrial and aquatic-dependent mammals
- Emergent aquatic invertebrates had elevated PFAS concentrations compared to terrestrial invertebrates
- Snapping turtles and watersnakes had the highest concentrations of PFAS among tested reptiles, comparable to levels linked to immunological effects in American alligators<sup>(4)</sup>

#### REFERENCES & ACKNOWLEDGEMENTS

- PFAS analyses in abiotic media, invertebrates, and avian species were supported by SERDP projects ER18-1626 and ER21-3464 (Suski and Custer), with reptile analyses funded by Michigan Department of Natural Resources (Award #190000001500)
- Department of Natural Resources (Award #19000001500).

  1. Custer, C. M., Custer, T. W., Delaney, R., Dummer, P. M., Schultz, S., & Karouna-Renier, N. (2019). Perfluoroalkyl contaminant exposure and effects in tree swallows nesting at Clarks Marsh, Oscoda, Michigan, USA. *Archives of environmental contamination and toxicology*, 77, 1-13.
- 2. Coy, C. O., Steele, A. N., Abdulelah, S. A., Belanger, R. M., Crile, K. G., Stevenson, L. M., & Moore, P. A. (2022). Differing behavioral changes in crayfish and bluegill under short-and long-chain PFAS exposures: Field study in Northern Michigan, USA. *Ecotoxicology and Environmental Safety*, 247, 114212.
- 3. Grippo, M., Hayse, J., Hlohowskyj, I., Picel, K., & Center, A. F. C. E. (2021). Derivation of PFAS Ecological Screening Values. Argonne National Laboratory. September.
- 4. Guillette, T. C., Jackson, T. W., Guillette, M., McCord, J., & Belcher, S. M. (2022). Blood concentrations of per-and polyfluoroalkyl substances are associated with autoimmune-like effects in American alligators from Wilmington, North Carolina. *Frontiers in Toxicology, 4*, 1010185.