Instruction Manual for the Lake Michigan Chinook Salmon-Alewife Predator-Prey Ratio Analysis

by
Rick Clark, Mike Jones, and Iyob Tsehaye
Quantitative Fisheries Center
Department of Fisheries and Wildlife
Michigan State University, East Lansing MI 48824

May 20, 2014

Introduction

The Lake Michigan Chinook salmon-alewife predator-prey ratio analysis (PPRA) was developed in a series of workshops in 2013 (Lake Michigan Salmonid Working Group and Collaborators 2014; Jones et al. 2014). The purpose of this report is to provide instructions for running the PPRA.

The primary purpose of the PPRA is to monitor the Chinook salmon-alewife predator-prey balance in the lake to help evaluate Chinook salmon stocking rates. The PPRA uses data collected by multiple government agencies: the Departments of Natural Resources for Illinois (ILDNR), Indiana (INDNR), Michigan (MIDNR), and Wisconsin (WIDNR), the US Geological Survey (USGS), and the US Fish and Wildlife Service (USFWS). The overall procedure involves: 1) assembling the necessary biological data; 2) estimating current-year values for each of the biological indicators and updating the time series of historical values; and 3) using the biological indicators and the projection model to judge the performance of the stocking policy.

Biological data, spreadsheets, Statistical Catch at Age models (SCA), scientific references, and these instructions are all organized in computer files within a main folder named "LM PPRA - 05-20-14" (Figure 1). The actual computer files for the current version can be obtained from the Chairs of the Salmonid (SWG) or Planktivore (PWG)

Working Groups for Lake Michigan or from the Quantitative Fisheries Center (QFC), Michigan State University.

Most of the PPRA calculations are made within spreadsheets, but abundance estimates for Chinook salmon and alewife are made in AD Model Builder (ADMB) (Fournier et al. 2012). The person(s) running this analysis should have a basic knowledge of MS-Excel and ADMB, and these programs must be on the computer being used for the analysis. In addition to the instructions in this manual, many notes and comments are imbedded in the spreadsheets and ADMB .dat and source code files to help those running the analysis. The plan developed by SWG and PWG was to have members of their respective committees run the PPRA each year with the assistance of the QFC as needed. SWG would be responsible for completing the Chinook salmon SCA and associated indicators, and PWG would be responsible for completing the alewife SCA and associated indicators. Ideally, the committee Chairs should designate specific member(s) to be responsible for completing the PPRA each year.

The data and results of the PPRA will change continuously through time. It will be very important to rigorously track and identify the official, current version of the software and analysis. In addition, we expect it will be necessary to make error corrections and analytical improvements to the PPRA as time goes on. Even the underlying software, MS-Excel and ADMB, will be revised into new versions, some of which could require changes to the PPRA. We suggest changing the date in the main computer folder name (Figure 1) when an official change is made to the analysis. This date could serve as a "stamp" to identify the PPRA version. Persons using data or results from the PPRA in future reports, papers, or other presentations should be encouraged to cite the date of the version they used in their references. To that end, we report here that we will be viewing the 05-20-14 version of the PPRA in these instructions. In addition, we will maintain a version date for these instructions on the cover page and footer of this report.

Step 1 - Request and assemble biological data

The PPRA is designed to assemble biological data for Chinook salmon and alewives on a lakewide basis and to use it to assess the predator-prey balance. No data are collected specifically for the PPRA. The PPRA uses data collected for other purposes by the cooperating agencies. Data are requested from state and federal agencies by sending the spreadsheet templates included in the PPRA computer files and asking agency representatives to enter their data in appropriate cells. This process is described in detail below. An attempt should be made to have the analysis completed before the annual meeting of the Lake Michigan Committee (LMC) in late March.
A. Data for the predator-prey ratio indicator - The Chinook-Alewife predator-prey ratio (P-P ratio) is the primary biological indicator. It is estimated as (weight of age-1-and-older Chinook) / (weight of age-1-and-older alewives). These weight estimates are for the standing stocks of Chinook and alewives in spring of the year. First, the numbers by age are estimated for each population using the SCAs described in (Tsehaye et al. 2014a; and 2014b). Then, the numbers are multiplied by average weights at age to estimate the weights of the populations.

Chinook SCA - The "Chinook SCA data" spreadsheet contains much of the data needed to estimate the abundance of Chinook salmon in the SCA. It is located in the "CHS Model Input" folder (Figure 2).

The "Chinook SCA data" spreadsheet contains tables with data from 1986 to present, and these tables must be updated for the current year. Throughout the rest of this manual, 2014 will be considered as the current year to be updated and the spreadsheet cells that need to be updated will be indicated with gray shading.

Under the＂Recruitment＂tab，enter the number of Chinook stocked and the percent wild age－1 fish for the current year（Figure 3）．Note that the percent wild in the current year is for age－1 fish，so it is used to estimate the number of wild fingerlings for the year before．Estimate the number of wild recruits in the current year as the average of the previous 3 years（see formulas and comments in spreadsheet）．

Figure 3.		－［．${ }^{\text {e }}$－Chinook SCA data－Microsoft Excel								
File Home		Insert Page Layout Formulas			Data		View a ？－回			x
あ冝。 Paste Clipboard ${ }^{3}$						$\%$ $\begin{array}{c}\text { Number } \\ \square\end{array}$	$\underset{\text { Styles }}{\substack{\text { A }}}$		$\frac{\text { Editing }}{}$	
H52＊f_{x}										
－	A	B		C		D		E		\triangle
1	Recuitmen	juvenile Chi	ook	k salmon	ock	and wid				三
2	in Lake Mi	an by year．								
3										
4										
5	Year	Number fingerlings stocked		rcent wild at age 1		ber wild gerlings		Total fingerlings recruited		\checkmark
47	2008	2，725，000		55．3\％		426，343		6，151，343		\triangle
48	2009	3，020，000		55．7\％		795，249		6，815，249		
49	2010	3，295，000		55．7\％		，945，167		7，240，167		
50	2011	3，219，000		54．5\％		，941，336		7，160，336		
51	2012	3，243，000		55．0\％		，968，271		9，211，271		
52	2013	1，761，000		64．8\％		618，258		6，379，258		
53	2014									三
54	2015									\checkmark
141	－\quad Rec	ment Harve		Effort	Age！	1111			－	
Read				\＃	回	100\％	\bigcirc	\square	＋	－

Under the "Harvest" tab, enter the total number of Chinook salmon harvested in each state, by stat district (Figure 4). These include all modes of lake fishing (boat, shore, and pier) for both "Charter" and "non-Charter" fishing. Note that to obtain complete estimates for Michigan waters, "expansions" must be added to direct creel survey estimates. These "expansions" were developed to adjust for statistical districts that were under-sampled for the given year. They use ratios between districts from previous years. For more information on "expansions", contact MIDNR.

Under the "Effort" tab, enter the boat-mode-only, targeted fishing effort for each state (Figure 5). Note that to obtain complete estimates for Michigan waters, "expansions" must be added. Currently, expansions are only estimated in terms of total effort (all modes of angling), but boat-only effort is needed for the SCA. To estimate expansions in terms of boat-only effort, one must multiply the total effort expansion times the ratio of (boat effort) / (total effort) from the direct creel survey estimates for the statistical district in question. If that statistical district was not sampled at all for the current year, as MM2 in 2013 (Figure 5), then use the ratio from the most recent year for which it can be calculated.

Under the "Age-Maturity" tab, enter the total numbers of all Chinook by age, the numbers of immature Chinook by age, and the numbers of mature Chinook by age (Figure 6). The spreadsheet uses these numbers to calculate the proportion mature by age and the overall proportion by age (Figure 7). These proportions are input to the SCA. Since 1986, these data have been provided by MIDNR from their creel bio-data files. However, data from other states could be added if available, but make sure the criteria for identifying immature and mature fish are consistent.

Alewife SCA - Indices of abundance from three sources are used to estimate alewife abundance: trawl surveys, hydroacoustic surveys, and predator consumption estimates. The USGS Great Lakes Science Center in Ann Arbor, MI conducts the trawl and hydroacoustic surveys. The consumption estimates for Chinook salmon are part of the output of the Chinook SCA. This means that the Chinook SCA must be completed before the alewife SCA. The "Alewife SCA data" spreadsheet should be used to help organize the data needed. It is located in the "ALE Model Input" folder (Figure 8).

Under the "Salmonid Stocking" tab, update the number of salmon and trout stocked in the current year (Figure 9).

Under the "ALE Proportion by age" tab, update the proportion by age of alewives collected in the trawl survey (Figure 10).

Under the "ALE Trawl Abundance" tab, update the abundances from the trawl survey (Figure 11).

Under the "ALE Acoustic Abundance" tab, update the abundances from the hydroacoustic survey (Figure 12).

B. Data for auxiliary indicators - Six auxiliary indicators are included in the analysis: 1) body condition of Chinook salmon collected from the fishery during July 1 through August 15; 2) charter fishery catch-per-effort (CPE); 3) average weights of age-3+ female Chinook salmon collected at weirs and harbors; 4) percent composition of salmonine species in the harvest; 5) relative success in achieving Fish Community Objectives; and 6) age structure of the alewife population. Data for each are located in the "Auxiliary Indicators" folder (Figure 1).

Chinook body condition indicator - The body condition of Chinook salmon in mid-summer of each year is the first auxiliary indicator. Condition is represented as the predicted weight of a 35 -inch fish from a regression of the natural logs of weight (Y) versus length (X). Only fish collected from a relatively short period during summer (July 1 to August 15) are used to calculate the regression. Lengthweight data are organized by individual state or agency. For example, lengths and weights from the Illinois creel survey are entered in file "CHS L-W data IL", lengths and weights from Michigan are entered in file "CHS L-W data-MI", and so on. Send spreadsheets to the appropriate agency representative and ask them to enter the individual lengths and weights of fish in their respective spreadsheets. For example, Figure 13 is the spreadsheet for Illinois. The units of measure used in the length-weight regressions are inches and pounds, so unit conversions might be necessary as in Figure 13.

Chinook catch per effort indicator - The catch per effort (CPE) of Chinook salmon in the charter fishery for each year is the second auxiliary indicator. Catch per effort is represented as (number of Chinook salmon harvested) / (targeted, boat-only salmonine effort in angler hours). Catch-per-effort data files are organized by state. For example, data from Illinois is in file "Charter CPE for CHS - IL", data from Michigan is in file "Charter CPE for CHS - MI", and so on. Send spreadsheets to the appropriate agency representative and ask them to enter effort and catch in their respective spreadsheets. For example, Figure 14 is the spreadsheet for Illinois.

Female Chinook weights at weirs indicator - The average weight of age-3+ female Chinook salmon collected each year at weirs and harbors is the third auxiliary indicator. Note that these should be weights of "egg full" fish. Do not include weights of spent fish. Weights of individual females sampled are organized by state. For example, data from Illinois is in file "Weights of Age 3+ CHS at IL Harbors". Send spreadsheets to the appropriate agency representative and ask them to enter the ages and weights in their respective spreadsheets. For example, Figure 15 is the spreadsheet for Illinois.

Salmonine harvest composition indicator - The composition of the recreational salmonine harvest each year is the fourth auxiliary indicator. Composition is represented as the percent by weight of Chinook salmon, lake trout, steelhead, coho salmon, and brown trout. These same data are already being organized on a lake-wide basis in the "Extractions Database" so it should be requested from the person in charge of updating that database (currently Brian Breidert, INDNR).

FCO performance indicator - A measure of the performance of the stocking policy in achieving the Salmonine Fish Community Objectives (FCO) (Eschenroder et al. 1995) is the fifth auxiliary indicator. The only data required by this indicator are the annual numbers of salmonines stocked and these data have already been assembled for the alewife SCA as described above (Figure 9).

Alewife age structure indicator - The age structure of the alewife population each year is the sixth auxiliary indicator. Age structure is represented as the number and percentage by age for age-1-andolder alewives. This indicator uses the estimated number of alewives by age from the alewife SCA as "data". Thus, the alewife SCA must be completed before this indicator can be completed.

Enter the SCA model estimated number of alewives by age for the entire time series from 1967 to present into the "Alewife percent by age" spreadsheet (Figure 16). Be sure to update this entire time series of estimates rather than the estimates for the current year only. The SCA refits the abundance estimates over the entire time series when the new data are added for the current year. Slight changes in the abundance estimates are likely to occur over all years whenever these new data are added.

Step 2 - Estimate current-year values for biological indicators and update time series of historical values

A. P-P ratio indicator-

Chinook salmon - Estimate the abundance by age of Chinook salmon using the SCA that is set up in the "CHS Model" folder. Transfer data from the "Chinook SCA data" spreadsheet into the ADMB input data file, which is located in the "Chinook Model" folder (Figure 17). This transfer is not set up to be a simple copy-paste operation. Data must be entered manually.

The ADMB .dat file is designed to be self-explanatory with text headers and/or notes followed by each category of data. Figure 18 illustrates the first few data arrays in the "chs_sca" data file.

```
Figure 18.
rIe cuit rulmal view Help
# This is the Chinook SCAA data file - updated for 2013 on Mar 15, 2014
# FIRST AND LAST MODEL AGE
    0
# FIRST AND LAST MODEL YEAR (FOR RECRUITMENT)
    19672013
# LK MI CHS RECRUITS AT AGE 0
# NUMBERS STOCKED FOR 1967-2013
    801390 687000 718000 1904000 2317000
    20231283045767 357805344279782 3317057
    297687953652634984271 61059244746993
    6312127 6539413770974959550005693000
    5800000 5417000 7859000 7125000 6237000
    5795000 5491000 5894000 6400000 6193000
    5534000 5860000 42120004429000 4220000
    4014861454000043057164302821 3225000
    3173000 2725000 3020000 3295000 3219000
    3243000 1761000
# NUMBERS OF WILD RECRUITED 1967-2013
    0 0 0 10000 50000
    70000 120000 200000 280000 380000
    4 8 0 0 0 0 5 8 0 0 0 0 6 3 0 0 0 0 ~ 8 0 0 0 0 0 ~ 1 2 0 0 0 0 0 ~
    1300000 1500000 1550000 1600000 1700000
    1750000 1800000 1900000 3839000 2550000
    2139000 2184000 1633000 2563000 2485000
    2888750 3292500 3696250 3696250 69000000
    4600000 2400000 4100000 2867000 3980021
    39229823426343 3795249 3945167 4034390
    59682714649276

When the data file is updated, double click on the "ADMB Source Code" file (Figure 19) to run the SCA. ADMB will generate several new files in the "CHS Model" folder. The estimates of the abundance of Chinook salmon by age will be in the "ADMB Report" file (Figures 19). This output array is designated as " N " in the report file (Figure 20).



Find and open the "CHS-ALE Ratio" spreadsheet. It is located in the "CHS-ALE Ratio Analysis" folder (Figure 19). Copy the Chinook abundance estimates from the ADMB report file and paste them into the "CHS-ALE Ratio" spreadsheet under the "Chinook Biomass" tab (Figure 21). Be sure to update the entire time series, and all age classes.


Update the projection model which predicts the abundance of Chinook salmon for the next 6 years (2014-2019 in Figure 22). Anyone familiar with MS-Excel should be able to understand the logic behind the projection model by examining the formulas in this spreadsheet. For future survival rates, use the average survival rate for the last 3 years for each age group. For future numbers of wild smolts, use the average number for the last 3 years. For future numbers of stocked smolts, use the anticipated number to be stocked for the current stocking policy.


The spreadsheet calculates the weight of the Chinook population for all years by multiplying abundances at age by average weights at age. Use these calculations to update the graph of the estimated biomass by year that is generated by the SCA for previous years and the projection model for future years (Figure 23).


Alewives - Follow the same procedure for estimating alewife biomass as was used for Chinook salmon: 1) estimate abundance up to the current year with the alewife SCA using ADMB; 2) estimate total biomass up to the current year using the spreadsheet; 3) estimate total abundance and biomass for future years using the projection model, and 4) update the graph of biomass by year (Figure 24). The ADMB data file and source code are located in the "ALE Model" folder (Figure 17). The alewife biomass calculations, projection model estimates, and graphic displays are performed in the "CHS-ALE Ratio" spreadsheet file under the "Alewife Biomass" tab (Figure 21).

The projection model for alewives assumes that adult alewife mortality in the future will change in proportion to Chinook salmon biomass. The average alewife mortality for the previous 3 years is used as the initial value, and then it is adjusted up or down based on the projected change in Chinook salmon biomass. For example, if Chinook salmon biomass is projected to increase by \(10 \%\), then alewife mortality will be adjusted upward by \(10 \%\). These calculations are built into the spreadsheet.

For future numbers of age-0 alewife recruits in the projection model, use the average number for the entire time series as estimated by the SCA.

Figure 24 shows the final results of these procedures. Also, shown is the lower limit and mean (or target) for alewife biomass. The lower limit of 100 kt was identified by biologists and stakeholders using structured decision analysis (Jones et al 2008). They decided that alewife biomass below this level presented an unacceptable risk of population collapse. The target of 240 kt is the mean alewife biomass from 100 runs of the risk assessment model (Szalai 2003) as was used in that analysis to simulate a \(50 \%\) cut in the stocking rate of Chinook salmon, which is the current stocking policy. The lower limit and target do not change every year, but are used to help judge the success of the stocking policy. For example, if either the observed or projected alewife biomass is below the lower limit, the stocking policy should be reviewed.


Finally, calculate the P-P ratio for all years in the "CHS-ALE Ratio" spreadsheet under the "Predator-Prey Ratio" tab (Figure 25) and update the graph showing the estimated ratios over time (Figure 26).



The target and upper limit for the P－P ratio of 0.050 and 0.100 ，respectively，were recommended by SWG（Lake Michigan Salmonid Working Group and Collaborators 2014；Jones et al．2014）．We will not go into great detail here about how these values were derived，but they were based on runs of the risk assessment model（Szalai 2003）and comparisons of P－P ratios for similar systems in other lakes． Basically，these are the P－P ratios corresponding to the target and lower limit defined for the alewife biomass in Figure 24．Outcomes of the risk assessment model suggest that exceeding a P－P ratio of 0.100 ，gives the same probability of predator－prey system collapse（ \(15 \%\) ）as the alewife population falling below 100 kts．

In addition，comparisons of P－P ratios in other lakes seem to support an upper limit near 0．100． The Chinook salmon－alewife P－P ratio in Lake Ontario was well below 0．100，at 0.065 from 1999 to 2005 （based on biomass estimates of Murry et al 2009），and while some concern has been expressed about the sustainability of that predator－prey system，it did not collapse．On the other hand，the Chinook salmon－ alewife predator－prey system of Lake Huron did collapse in 2003－2006（Johnson et al．2010），and the average P－P ratio for the five years prior to the collapse was 0.112 （James Bence，QFC，Michigan State University，personal communication）．Thus，it would seem prudent for managers to avoid P－P ratios near or above 0.100 in Lake Michigan．

\section*{B．Auxiliary Indicators－}

Chinook body condition indicator－Use the data analysis feature of MS－Excel to calculate linear regressions for the current year from the ln－transformed length－weight data supplied by each agency． Then，accumulate the results for all the agencies in the spreadsheet named＂Aux 1 －Trends in Chinook Condition＂，which is located in the＂Aux 1 －Analysis＂folder．The spreadsheet has a tab for each agency． Enter the intercepts，slopes，residual mean square（MS），and sample sizes for the regressions for each agency as shown for the State of Illinois in Figure 27．Then，copy down the regression formula in column E to estimate the weight of the standard 35 －inch Chinook salmon for the current year．This formula uses the residual MS to correct the bias in the ln－transformed error term as described in Newman（1993）．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Figure 27.}} & \multicolumn{4}{|r|}{\(\mathrm{f}_{\mathrm{x}}\) Auxiliary Indicator 1 －Illinois} & & & \(\checkmark\) \\
\hline & & & & C & D & E & F & G & H & \(\triangle\) \\
\hline 1 & \multicolumn{5}{|l|}{Auxiliary Indicator 1 －Illinois} & & & & & \\
\hline 2 & \multicolumn{9}{|l|}{Midsummer Condition of Chinook salmon in Recreational Fishery－State of Illinois} & 三 \\
\hline 3 & \multicolumn{8}{|l|}{Samples restricted to those collected from July 1 to August 15 of each year} & & \\
\hline 4 & \multicolumn{8}{|l|}{\(\operatorname{Ln}(W)\) vs \(\operatorname{Ln}(\mathrm{L})\) regressions were calculated for each year separately．} & & \\
\hline 5 & & & & & & & & & & \\
\hline 6 & & & & & & & \multicolumn{4}{|c|}{35 ＝size of Index fish（inches）} \\
\hline 7 & & & & & & & & & & \\
\hline \multicolumn{9}{|l|}{\(8 \operatorname{Ln}(\mathrm{~W})\) vs \(\operatorname{Ln}(\mathrm{L})\) regession parameters and estimates（pounds and inches）} & & \\
\hline 9 & & Year & Intercept & Slope & \begin{tabular}{l}
Residual \\
MS
\end{tabular} & Number in Sample & Corrected Regression weight of index fish （pounds） & \begin{tabular}{l}
Average K \\
（Fulton＇s Condition Factor）
\end{tabular} & & \\
\hline 10 & & 1984 & & & & & & & & \(\checkmark\) \\
\hline 38 & & 2012 & －8．011 & 3.008 & 0.0141 & 17 & 14.7 & 0.95 & & \(\triangle\) \\
\hline 39 & & 2013 & －8．051 & 3.071 & 0.0201 & 125 & 17.8 & 1.12 & & \\
\hline 40 & & 2014 & & & & & & & & ® \\
\hline & 4 － & 1 Con & mbined／Se & ate In & diana Illi & ois Michig & 1 ｜il｜ & & & \\
\hline \multicolumn{4}{|l|}{Ready} & & & & 囲回 \(\square^{\text {P }}\) & 100\％\(\bigodot\) & \(\square\) & \\
\hline
\end{tabular}

Estimate the weight of a 35-inch fish for all the agencies separately under the "Separate" tab, and then combine them into a lake-wide estimate by calculating a weighted average under the "Combined" tab. This average is weighted by the number of samples collected by each agency. The formula is built into the spreadsheet. The result is the Chinook salmon condition indicator. Add the current-year estimate to the time series and plot values as in Figure 28. Individual agency estimates are also plotted separately for comparison (Figure 29). Notice that data from the Michigan waters of Lake Huron are also included in the graphs so that one can compare the condition of fish in a lake in which the predator-prey system collapsed (2003-2006).


Figure 29. Lake Michigan States Compared to Lake Huron Weight of Standard 35-inch Chinook


Chinook catch per effort indicator－Accumulate the charter catch and effort data from the individual states in the spreadsheet named＂Aux 2 －Charter CPE for CHS＂，which is located in the＂Aux 2 －Analysis＂folder．The spreadsheet has a tab for each agency．Enter the number harvested and targeted effort for each agency as shown for the State of Illinois in Figure 30．Then，copy down the formula in column D to estimate the CPE of Chinook salmon for the current year．
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Figure 30.} & \(\checkmark\) & \(f_{\text {fx }}=\mathrm{C} 33 / \mathrm{B}\) & ／B33 & & \(\checkmark\) \\
\hline － & A & B & C & D & E & \(\wedge\) \\
\hline 1 & \multicolumn{3}{|l|}{Auxiliary 2 －State of Illinois} & & & \\
\hline 2 & \multicolumn{6}{|l|}{Charter Fishery Effort，Harvest，and Catch per Hour by Year} \\
\hline 3 & & & & & & \\
\hline \multicolumn{7}{|l|}{4} \\
\hline 5 & Year & Targeted Salmonine Effort （Angler Hours） & Targeted Harvest of Chinook salmon （number） & \begin{tabular}{l}
Number \\
Chinook \\
Harvested \\
Per Hour
\end{tabular} & & \(\checkmark\) \\
\hline 30 & 2010 & 96914 & 12174 & 0.126 & & \(\bullet\) \\
\hline 31 & 2011 & 95376 & 9310 & 0.098 & & \\
\hline 32 & 2012 & 98891 & 12327 & 0.125 & & \\
\hline 33 & 2013 & 98328 & 6450 & 0.066 & & \\
\hline 34 & 2014 & & & & & \(\checkmark\) \\
\hline \multicolumn{3}{|l|}{14 4 M M Illinois Michigan} & Wiscons｜1 & III & & －（1） \\
\hline Ready & & & 囲回凹 100\％ & \％- & & ＋+ \\
\hline
\end{tabular}

Estimate the Chinook salmon CPE for all the agencies separately under the "Separate" tab, and then combine them into a lake-wide estimate by calculating the 4-state average under the "Combined" tab. This lake-wide estimate is the sum of the harvests divided by the sum of the efforts. The formula is built into the spreadsheet. The result is the charter CPE indicator. Add the current-year estimate to the time series and plot values as in Figure 31. Individual agency estimates of Charter CPE are also plotted separately for comparison (Figure 32).


Figure 32.

> Targeted, Boat Fishing Catch per Hour of Chinook in Lake Michigan Charter Fishery - States Separately


Female Chinook weights at weirs indicator - Accumulate the age 3+ weights and numbers sampled from the individual states in the spreadsheet named "Aux 3 - Age 3+ Female CHS wts", which is located in the "Aux 3 - Analysis" folder. The spreadsheet has a tab for each weir or agency. Calculate and enter the average weights and numbers sampled for each weir or agency as shown in Figure 33 for Illinois harbors.


Calculate and assemble the average weights of age \(3+\) females for all the agencies separately under the "Separate" tab, and then combine them into a lake-wide estimate by calculating a weighted average under the "Combined" tab. This average is weighted by the number of samples by individual weir or harbor. The formula is built into the spreadsheet. This result is the female-weight indicator. Add the current-year estimate to the time series and plot values as in Figure 34. Individual weir or agency estimates of age-3+ female weights are also plotted separately for comparison (Figure 35).


Salmonine harvest composition indicator - Enter the weights harvested for each salmonine species for the current year in the spreadsheet named "Aux 4 - Harvest Composition - Analysis", which is located in the "Aux 4 - Analysis" folder. Plot the time series as a stacked area plot, as shown in Figure 36.


FCO performance indicator－This indicator is expressed as the＂FCO Index＂，which is calculated as the sum of the deviations between the salmonine yields from a hypothetical run of the CONNECT model（Rutherford 1997，Lake Michigan Salmonid Stocking Task Group 1998）to the yield expectations identified in the Fish Community Objectives．The hypothetical model run estimates the yields that would have occurred today if the levels of recreational fishing effort during the 1980s had continued to present．In reality，fishing effort has declined，which is why these yield predictions are considered hypothetical．Clark（2012）gives a more detailed description of the＂FCO Index＂and the reasoning behind it in Recommendation 3 of his report．

To calculate the＂FCO Index＂，enter the number of Chinook salmon recruits expected（stocked and wild）for the current and future years into the＂Connect 4＂model spreadsheet（Figure 37）．This spreadsheet is located in the＂Aux 5 －Data and Model＂folder．Enter the same data for each of the other salmonines under the appropriate spreadsheet tabs．The＂CONNECT 4＂spreadsheet uses this recruitment data to estimate potential yields for each species in age－structured models．
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Figure 37.} & － & 4618 & & & \(\checkmark\) \\
\hline － & A & B & C & D & E & － \\
\hline 93 & \multicolumn{5}{|l|}{Recruitment Input－Chinook Salmon} & － \\
\hline 94 & & & Thousand & & & \\
\hline 95 & & Thousand & Hatchery & Thousand & Total & \\
\hline 96 & & Hatchery & Smolts & Wild & Thousand & \\
\hline 97 & & Fish & Stocked & Smolts & Yearling & \\
\hline 98 & Year & Stocked & （Adjusted） & Produced & Equivalents & \\
\hline 139 & 2004 & 4303 & 3873 & 3800 & 2552 & － \\
\hline 140 & 2005 & 4306 & 3875 & 3800 & 3069 & \\
\hline 141 & 2006 & 3253 & 2928 & 3800 & 3070 & \\
\hline 142 & 2007 & 3173 & 2856 & 3400 & 2691 & 三 \\
\hline 143 & 2008 & 2725 & 2453 & 3426 & 2502 & \\
\hline 144 & 2009 & 3020 & 2718 & 3795 & 2351 & \\
\hline 145 & 2010 & 3295 & 2966 & 3945 & 2605 & \\
\hline 146 & 2011 & 3219 & 2897 & 3941 & 2764 & \\
\hline 147 & 2012 & 3243 & 2919 & 5968 & 2735 & \\
\hline 148 & 2013 \＆After & 1761 & 1585 & 4618 & 2481 & \\
\hline \multicolumn{7}{|l|}{119＋M Chinook Salmon Steelhead Lakel｜4［i｜l} \\
\hline \multicolumn{3}{|l|}{Ready} & \multicolumn{2}{|l|}{囲回凹 80\％\(\bigodot\)} & ＋ & \\
\hline
\end{tabular}

Next, open the spreadsheet named "Aux 5 - FCO Analysis", which is located in the "Aux 5 FCO Analysis" folder. This spreadsheet is linked to the "Connect 4" model spreadsheet, so click "yes" to update the links when opening the file. The yield estimates will be transferred to appropriate cells under the "Tables" tab and the deviations between the potential yields and the FCO expectations will be calculated in column "D" for Chinook salmon, "I" for lake trout, and so on (Figure 38).


The spreadsheet also plots the FCO Index over time (Figure 39). An index value of zero means that the deviations between the model-predicted and FCO-expected yields sum to zero, which suggests that the stocking policy in place is coming close to achieving the FCO-expected yields. However, a zero value could also occur when the "over stocking" of one species equals the "understocking" of another.


One can examine the yield values for each individual species to determine if they exceed or fall short of their individual FCO expected values. The spreadsheet plots the model-predicted potential yields and the FCO yield expectations for each species so they can be compared (Figure 40). For example, the CONNECT model predicted that the stocking rates in place for Chinook salmon and lake trout should provide potential yields that are fairly close to FCO expectations. However, steelhead and brown trout stocking rates are predicted to provide yields higher than FCO expectations and coho salmon lower.


Alewife age structure indicator - Update the graph comparing the current year alewife population structure to that of the 2001-2005 average (Figure 41).


Step 3 - Use results to judge the performance of the stocking policy
A. P-P ratio indicator - The idea behind the Chinook salmon-alewife P-P ratio is that it should be a good measure of trophic balance and that it can be used as a guide for managers to establish and monitor sustainable stocking rates for Chinook salmon. If desired, the deviations between the target and projected ratios (Figure 26) can be used to "fine tune" stocking rates by making small changes to minimize the deviations. The upper limit ratio (Figure 26) can be used as a management "red flag" trigger. If either the estimated historical or projected ratios exceed the upper limit, it indicates a serous imbalance could be occurring now or developing in the near future. Such an outcome should generate immediate and serious discussion regarding reductions in stocking rates.

We conducted a retrospective analysis of the years in which stocking was reduced (1998, 2005, and 2011) to determine if the PPRA, if it had been available in those years, would have supported the previous decisions to reduce stocking rates of Chinook salmon. Results showed that the PPRA would have supported the decisions in every case. The most important finding was that the estimated P-P ratio for the current year of analysis was always within an acceptable range, but that projections of P-P ratios for the near future were predicted to exceed the upper limit of 0.100 . For example, Figure 42 shows the results for 2005. The results of the retrospective analysis demonstrate the value of the projection model.


Based on the results of the PPRA through 2013, it appears that the current stocking rate of 1.76 million Chinook salmon smolts is expected to perform well (Figure 26). Of course, this assumes that rates of recruitment, growth, and mortality of predator and prey remain similar to those occurring in recent history. Only continued monitoring of these rates can detect unforeseen changes. For example, recent surveys have suggested that a resurgence of lake trout reproduction could be occurring. If so, additional wild lake trout would likely increase the predation mortality rate on alewives, and it would be necessary to account for this in the analysis.
B. Auxiliary Indicators - Results of the auxiliary indicators should be used to supplement the PP ratio. For example, if the P-P ratio exceeds the upper limit, calling for serious review of the stocking policy, the auxiliary indictors can be used to help assess the accuracy and reasonableness of that P-P ratio estimate. In addition, several of the auxiliary indicators, such as the average weights of females at weirs and harbors, are direct field measurements in support of the modeling work. Such estimates can be very useful to help explain the status of the predator-prey system and the reasons for stocking decision to stakeholders and the general public. Also, the plots of the historical time series for these indicators help put the current values into context.

Chinook body condition indicator - The relationship between the relative Chinook condition (predicted weight of a \(35-\mathrm{inch}\) fish) and the P-P ratio should help biologists evaluate the validity of the estimated P-P ratio for a given year. This is especially true when the P-P ratio estimate approaches the upper limit of 0.100 and suggests management action should be considered.

The weight of predators at a given length should increase as the number of prey per predator (potential ration size) increases. Therefore, the relative condition of predators should be inversely related to the P-P ratio. A plot of Chinook condition versus P-P ratio supports this idea (Figure 43). Also, a regression of Chinook condition versus P-P ratio (solid line in Figure 43) is statistically significant \(\left(\mathrm{R}^{2}=\right.\) \(0.57, \mathrm{P}<0.01\) ). Judging from this regression line in Figure 43, when P-P ratios approach the upper limit of 0.100 , the predicted weight of a standard 35 -inch fish should decline to about 14 pounds. If not, then the estimate of the P-P ratio might be incorrect.


Chinook condition estimates in Lake Huron also support the idea that predator-prey situations leading to predicted weights of 14 pounds for 35 -inch fish should be avoided (Figure 28). Predicted weights were below 14 pounds for 4 consecutive years (2004-2007) in Lake Huron.

The problem with the Chinook condition indicator is that by the time the predicted weights reach 14 pounds, it might be too late for managers to take action to prevent a collapse as illustrated by the timing of events in Lake Huron. Alewife populations collapsed in 2003 when the predicted condition of Chinook salmon was 14.9 pounds, a value that had occurred and been approached several times in the past with no apparent problem (Figure 28). It was not until 2004, after the alewife population had already collapsed, that predicted weights dropped to 13.5 pounds and lower (Figure 28). Hopefully, the P-P ratio projection model for Lake Michigan can do a better job of giving advanced warning of these serious problems.

Chinook catch per effort indicator - The catch per hour from the charter fishery is monitored to help judge the relative performance of the fishery from year to year. From the perspective of anglers catch per hour is one of the most important and noticeable performance measures, so anglers usually have a strong interest in the results of this indicator. Although, interpreting and communicating the significance of a given catch rate can be challenging. While high catch rates give anglers the impression that fishing is very good, high catch rates usually occur in years with high P-P ratios and could indicate a
problem is developing in the predator-prey balance. Data from this PPRA shows that catch rates are proportional to P-P ratio (Figure 44). The solid line in Figure 44 is a regression ( \(\mathrm{R}^{2}=0.74, \mathrm{P}<0.01\) ). Also, the fish tend to be in relatively poor condition in years with the high P-P ratios (Figure 43). This suggests that attempting to maximize the catch per hour for the Chinook salmon fishery would not be a good management objective unless stakeholders and managers are willing to accept a relatively high risk of collapse of the predator-prey system.

Figure 44.
Charter Boat CPE versus Predator-Prey Ratio


Female Chinook weights at weirs indicator - The idea behind this indicator is that the average weights of age-3-and-older female Chinook salmon collected at weirs and harbors in fall could be an additional measure of the predator-prey balance in the lake. Ideally, these weights should be correlated with the Chinook condition indicator 1. Data from this PPRA shows this to be true for our data through 2013 (Figure 45). The solid line in Figure 45 is a regression \(\left(\mathrm{R}^{2}=0.68, \mathrm{P}<0.01\right)\).
\begin{tabular}{|c|c} 
Figure 45. & \(\begin{array}{c}\text { Average Weight of age-3+ Female at Wiers and Harbors } \\
\text { versus Predicted Weight of } 35-\text { inch Fish in Creel }\end{array}\) \\
&
\end{tabular}


Salmonine harvest composition indicator - Establishing a diverse salmonine community is part of the fish community objectives for Lake Michigan (Eshenroder et al. 1995). The composition in weight of the salmonine harvest has been estimated for many years as one measure of that diversity. The estimate was added to the PPRA to help provide a more complete representation of the salmonine community.

FCO performance indicator - This indicator was added to the PPRA to help judge how successful management practices have been in achieving the yield expectations set forth in the Salmonine Objectives (Eshenroder et al. 1995). The FCO index is one way to measure and communicate the overall performance of the stocking policy and the hypothetical yields from the CONNECT model add species-by-species performance measures.

Alewife age structure indicator - The idea behind this indicator was that the effects of excessive predation on alewives might be revealed by erosion of the number of age groups in the population and/or a reduction in the absolute numbers of older fish. In addition, this indicator could help monitor natural fluctuations in year-class strength of alewives. One way to analyze the age structure would be to compare the numbers by age of alewives for the current year to that of a standard population deemed to have an ideal age structure. For example, the average 2001-2005 population age structure could be used as a standard for comparison because the alewife biomasses (Figure 24) and the P-P ratios (Figure 26) were near target levels in those years. Thus, it seems reasonable to assume that the age structure in these years was close to ideal. Notice that average numbers by age in 2001-2005 were fairly evenly distributed, and included 670,000 fish ( \(5.5 \%\) ) age 6 or older (Figure 41). On the other hand, numbers by age in 2013 were unevenly distributed, and included only 122,000 fish ( \(0.9 \%\) ) age 6 or older.

Overall, \(94 \%\) of the total abundance of alewives in 2013 was within only two age groups ( 1 and 3). Managers should consider such a skewed age structure as a precarious situation for the alewife population. Thus, the alewife age structure in 2013 should be considered as additional evidence that cutting Chinook salmon stocking in 2013 was a good decision.

\section*{References}

Clark, R. D., Jr. 2012. Review of Lake Michigan Red Flags Analysis. Quantitative Fisheries Center Technical Report 2012-01, Michigan State University, East Lansing, MI.

Jones, M., R. Clark, and I. Tsehaye. 2014. Workshops to revise and improve the Lake Michigan red flags analysis. Science Transfer Project Completion Report. Great Lakes Fisheries Commission. Ann Arbor, MI.

Eshenroder, R. L., M. E. Holey, T. K. Gorenflo, and R. D. Clark, Jr. 1995. Fish Community Objectives for Lake Michigan. Great Lakes Fishery Commission Special Publication 95-3, Ann Arbor, Michigan.

Fournier, D.A., H.J. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, M.N. Maunder, A. Nielsen, and J. Sibert. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27:233-249.

Johnson, J. E., S. P. DeWitt, and D. J. A. Gonder. 2010. Mass marking reveals emerging self regulation of the Chinook salmon population in Lake Huron. North American Journal of Fisheries Management 30: 518-529.

Jones, M. J., J. R. Bence, E. B. Szalai, and Wenjing Dai. 2008. Assessing stocking policies for Lake Michigan salmonine fisheries using decision analysis. In: D. F. Clapp and W. Horns, editors. The State of Lake Michigan in 2005. Great Lakes Fishery Commission Special Publication 08-02. pp 81-88.

Lake Michigan Salmonine Stocking Task Group. 1998. Final Report to the Great Lakes Fishery Commission, Lake Michigan Technical Committee. 26 pp.

Lake Michigan Salmonid Working Group and Collaborators. 2014. A summary of review efforts for the Lake Michigan Red Flags Analysis and proposed recommendations for the Predator-Prey Ratio. Report to the Great Lakes Fishery Commission, Lake Michigan Committee in Windsor, Ontario, March 26, 2014.

Murry, B. A., M. J. Connerton, R. O'Gorman, D. J. Stewart, and N. H. Ringlery. 2009. Lakewide estimates of alewife biomass and Chinook salmon abundance and consumption in Lake Ontario, 1989-2005: Implications for prey fish sustainability. Transactions of the American Fisheries Society 139(1):223-240.

Newman, M. C. 1993. Regression analysis of log-transformed data: statistical bias and its correction. Environmental Toxicology and Chemistry 12: 1129-1133.

Rutherford, E. R., 1997. Evaluation of natural reproduction, stocking rates, and fishing regulations for steelhead, Chinook salmon, brown trout, and coho salmon in Lake Michigan. Michigan Department of Natural Resources. Federal Aid to Fish Restoration Final Report. F-35-R-22. Study 650. Ann Arbor.

Szalai, E. B. 2003. Uncertainty in the population dynamics of alewife (Alosa pseudoharengus) and bloater (Coregonus hoyi) and its effects on salmonine stocking strategies in Lake Michigan. Ph.D. thesis. Mich. State Univ., East Lansing, MI.

Tsehaye, I., M. L. Jones, T. O. Brenden, J. R. Bence, and R. M. Claramunt. 2014a. Changes in the Salmonine community of Lake Michigan and their implications for predator-prey balance. Transactions of the American Fisheries Society 143:420-437.

Tsehaye, I., M. L. Jones, J. R. Bence, T. O. Brenden, C. P. Madenjian, and D. M. Warner. 2014b. A multispecies statistical age-structured model to assess predator-prey balance: application to an intensively managed Lake Michigan pelagic fish community. Canadian Journal of Fisheries and Aquatic Sciences 71:1-18.```

