2012 Grand Traverse Orchard & Vineyard Show January 24, 2012

Do High Density Apple Planting Systems Make Sense?

Stephen A. Hoying, Terence L. Robinson and Alison M. DeMarree Department of Horticulture and LOFT

What is an Orchard System?

An orchard system is a comprehensive program (a strategy and a recipe) for the establishment of trees in an orchard.

Barritt 2003

PROFIT GENERATORS

- PRODUCT PRICE
 - FRUIT QUALITY
 - VARIETY Honeycrisp
 - FRUIT SIZE Gala
 - FRUIT COLOR McIntosh
 - FRUIT CONDITION Empire
 - MARKET CONDITIONS Macoun

• YIELD

- Precocity TIME TO FIRST BEARING
- TIME TO MATURE YIELD

The Critical components of an Orchard System are those that are necessary to make the orchard Profitable!

A successful System will:

- •Produces high yields of high quality fruit.
- •Early return on capital (rapid production)
- •Economizes on labor input
- •Economizes on materials input?

Key Questions

- Does High Density really make economic sense?
- What Density and what system of pruning and training are best?
- How important is the Planting System?
- Does Tree Density or Training System Influence Fruit Quality?
- What other systems factors most strongly influence profitability?

There has been a steady evolution in planting systems

40 trees/acre

600 trees/acre Pedestrian Orchards

1960's

1980's

200 trees/acre

Overgrown tops and shade

There has been a steady evolution in planting systems Triple Row Slender Spindle/M.9

Pedestrian Orchards-1980's

Moderate yields and moderate light interception

Higher yields but poor fruit quality in the center row and poor weed control

High yields and high light interception

Geneva Y-trellis/M.26

Late 1980's and early 1990's- Tall Orchards (again)

USA-Vertical Axis - 500 trees/acre

Mid 1990's - Super High Density (2,200 tree/acre)

Super Spindle/M.9

V- Super Spindle/M.9

List of Planting Systems Trials

- Apple
 - Geneva (various planting dates)
 - Crist and Dressel 1987
 - Trapani and Clark 1989
 - LynOaken and Cahoon 1989
 - Orchard Dale 1992
 - Morgan and Lagoner 1993&4
 - Dressel and Van de Walle 2005
 - Everett 2006
 - Chiaro 2007
 - HVL 2010

HV HV WNY – Lake Ont. WNY – Lake Ont. WNY – Lake Ont. HV & WNY Champlain V HV

The Purpose of these Trials:

- A <u>comparison</u> of planting densities & systems, canopy architecture
- Develop an understanding of economic impact of various factors on profitability and cash flow

Trapani/Clark Systems Trials

System	Spacing	Density (trees/a)
Vertical Axis/Mark	7X14	444
Vertical Axis/M.9/MM.111	7X14	444
Vertical Axis/M.26	8X16	340
Vertical Axis/M.7	8X16	340
Central Leader/Mark	10X18	242
Central Leader/M.9/MM.111	10X18	242
Central Leader/M.26	12X20	182
Central Leader/M.7	12X20	182

Cahoon and LynOaken Planting Systems Trial

System	Density	Type
4-Wire Vertical Trellis	605 T/A	Vertical
Slender Spindle	605 T/A	Vertical
Y-Trellis	605 T/A	V-shaped
Triple Row (6X6X12)	908 T/A	Vertical
V-Slender Spindle (4X12	2) 908 T/A	V-shaped

Planting

Systems

Orchard Dale Planting Systems Trial (Planted 1993)

System	Trees/Acre				
Slender Spindle/M.9	640				
Vertical Axis/M.26	726				
Vertical Axis/M.9	907				
V-Slender Spindle/M.9	907				
Y-Trellis /M.9	907				
V-Trellis /M.9	907				
Super Spindle/M.9	2420				

Orchard Dale

2 Year Old Gala/M.9 trained to Super Spindle

The Geneva Planting Systems Trial 1997

System	trees/acre					
Slender Pyramid/M.7	242					
Slender Pyramid/M.26	340	·				
Vertical Axis/M.9	414					
Vertical Axis/M.9	518					
High Density Vertical Axis/M.9	670					
High Density Vertical Axis/M.9	908					
Tall Spindle/M.9	1320					
Super Spindle	2178					

Super Spindle

Tall Spindle

Spindle 2.0 X 10 ft 10 ft tall

3.0 X 11 ft 11 ft tall

Which Planting System Was Best?

Slender Spindle Types
Multiple Row Systems
Vertical Trellis
Y or V Trellis Types
Vertical Axe Types

Planting Systems Analysis •Establishment Costs •Overhead Costs •Growing Costs Total Yield •Packout •including deductions for: Marketing orders Storage and packing charges Sales Commissions

2003 Planting System AnalysisVariety:Gala						Gala			Workbook by A. De Marree,				
Discount	Discount Interest Rate: 5.0% Space between rows:		veen rows:	14			Cornell Cooperative Extension						
Cost to ha	arvest a b	ushel of a	pples:	\$1.11		Space betv	veen trees:	5			Av. return per bu. \$5.5		
Value of land per ACRE: \$1.000			1					-					
	-						Total	Total	Total	Total	Net	Annual	Accum.
	Yield	Yield	Gross				Growing	Fixed	Harvest	Costs	Annual	N.P.V.	N.P.V.
Year	kg/træ	Bu. / A.	Income	Labor	Machinery	Materials	Costs	Costs	Costs	per Acre	Cash Flow	Profit	of Profit
Land							1,000			\$1,000	(1,000)	(1,000)	(\$1,000)
Preplant				111	845	339	1,295	537	0	\$1,832	(1,832)	(1,832)	(\$2,832)
Planting	0.0	0.0	\$0	790	658	5,527	6,975	537	0	\$7,512	(7,512)	(7,154)	(\$9,986)
2	0.5	16.3	\$90	448	205	302	955	537	18	\$1,510	(1,420)	(1,288)	(\$11,275)
3	5.9	192.2	\$1,057	537	205	555	1,298	537	213	\$2,048	(991)	(856)	(\$12,130)
4	10.5	342.1	\$1,882	794	205	562	1,560	537	380	\$2,477	(596)	(490)	(\$12,620)
5	16.5	537.6	\$2,957	621	205	389	1,216	537	597	\$2,349	607	476	(\$12,144)
6	20.0	651.6	\$3,584	615	205	376	1,196	537	724	\$2,456	1,127	841	(\$11,303)
7	24.0	781.9	\$4,301	620	205	501	1,327	537	868	\$2,732	1,569	1,115	(\$10,188)
8	28.0	912.3	\$5,017	611	205	564	1,380	537	1,013	\$2,930	2,087	1,413	(\$8,776)
9	30.0	977.4	\$5,376	617	205	521	1,344	537	1,085	\$2,966	2,410	1,553	(\$7,222)
10	30.0	977.4	\$5,376	620	205	536	1,361	537	1,085	\$2,984	2,392	1,469	(\$5,754)
11	30.0	977.4	\$5,376	620	205	536	1,361	537	1,085	\$2,983	2,392	1,399	(\$4,355)
12	30.0	977.4	\$5,376	620	205	536	1,361	537	1,085	\$2,983	2,392	1,332	(\$3,023)
13	30.0	977.4	\$5,376	620	205	536	1,361	537	1,085	\$2,983	2,392	1,269	(\$1,754)
14	30.0	977.4	\$5,376	620	205	536	1,361	537	1,085	\$2,983	2,392	1,208	(\$546)
15	30.0	977.4	\$5,376	620	205	536	1,361	537	1,085	\$2,983	2,392	1,151	\$605
16	30.0	977.4	\$5,376	620	205	536	1,361	537	1,085	\$2,983	2,392	1,096	\$1,701
17	30.0	977.4	\$5,376	620	205	536	1,361	537	1,085	\$2,983	2,392	1,044	\$2,744
18	30.0	977.4	\$5,376	620	205	536	1,361	537	1,085	\$2,983	2,392	994	\$3,738
19	30.0	977.4	\$5,376	620	205	536	1,361	537	1,085	\$2,983	2,392	947	\$4,685
20	30.0	977.4	\$5,376	620	205	536	1,361	537	1,085	\$2,983	2,392	902	\$5,587
											1,000	377	\$5,964
								Internal Ra	te of Return:		8.74%		

Table 3. Spreadsheet to determine Potential Profit for Vertical Axis system@622 trees/acre.

About the Analysis:

- Discounted Cash Flow = Time Value of \$\$
 - A dollar received today is worth more than a dollar received some time in the future
 - Internal Rate of Return
 - Net Present Value
 - If the NPV of accumulated profit reaches zero it is a worth doing

Warning:

- We hope you see the forest from the trees
 - Overall <u>concepts</u> versus individual costs used in the example
 - Costs representative of Western NY fruit farms in transition from low density to higher density orchards
 - You can plug your own costs in later!
 - Analysis: Excel workbook template

Horticultural Results

• Tree density had a highly significant positive effect on yield. The cumulative yield of the highest tree density was 3X greater than the lowest density.

• Tree density had a highly significant effect on final trunk cross-sectional area. The highest planting density produced trees about 1/3 the size of the lowest planting density.

Horticultural Results - Yield

Effect of Tree Density on 7 Yr. Cumulative

The cumulative yield of the highest tree density was 3X greater than the lowest density.

Horticultural Results - Tree Size

•The highest planting density produced trees about 1/3 the size of the lowest planting density.

Economic Study used average yields and estimated cash flows over 20 years

Yield Curves for 5 systems

20 Year Cash Flows

Economic Results

When profitability was calculated per unit land area with traditional fruit prices, profitability over 20 years increased with increasing tree density up to a density of 1,000 trees/acre (2,500 trees/ha). When profitability was calculated per \$10,000 invested then the optimum tree densities was about 850 trees/acre (2100 trees/ha).

NPV for 5 Systems

The Necessity of Being an Efficient Producer

- Fruit yield had a large effect on profitability. If yields were reduced by 10% then the low density Slender Pyramid system was barely profitable. If yields were reduced 20% then only the Slender Vertical Axis system was profitable.
- Reducing yield level reduced the optimum density slightly from 1,100 to 1,000 trees/acre.

High Yields

- 10% yield reduction then the low density Slender
 Pyramid system was barely profitable.
- 20% yield Reduction only the Slender Vertical Axis system was profitable.
- Reducing yield level barely reduced the optimum density. (100 trees/Acre)

Figure 7. Effect of land cost on profitability (Net Present Value after 20 years) of 5 orchard systems with different tree densities.
Effect of Fruit Price (Variety)

- Low prices(\$4.50/bu) All systems are not profitable except the Slender Vertical Axis (900 trees/acre).
- Very High Prices (\$10.00/bu) then profitability was greatest at the highest tree density (2178 trees/acre- Super Spindle).

High fruit prices (\$6.50) then profitability was high for all systems but peaked for Tall Spindle.

Effect of Fruit Price (Variety)

- Fruit price had the greatest effect on profitability.
- If fruit prices were low (\$4.50/bu) then all systems were not profitable except the Slender Vertical Axis.
- If fruit prices were very high (\$10.00/bu) such as with a new club variety then profitability was greatest at the highest tree density (2178 trees/acre- Super Spindle).
- At very high fruit prices profitability was extremely high for all systems.

Effect of Fruit Price on Profitability

Tree Price

• Low tree prices (\$2.00/tree) the optimum density was above 2,000 trees/acre (Super Spindle).

• High tree prices (\$8.00) the optimum density was between 950 trees/acre (Vertical Axis)

• At high planting densities tree price had a very large impact on profitability while at low tree densities tree price had only a small effect on profitability.

Effect of Tree Price

•Tree price had a large influence on profitability and the optimum tree density. With low tree prices the optimum density was above 2,000 trees/acre (5,000 trees/ha) while with high tree prices the optimum density was between 950 trees/acre (2,300 tree/ha).

• At high planting densities tree price had a very large impact on profitability while at low tree densities tree price had only a small effect on profitability.

Figure 9. Effect of tree price on profitability (Net Present Value after 20 years) of 5 orchard systems with different tree densities.

Planting and Support System

Profitability over 20 years increases with increasing tree density up to a density of 1,000 trees/acre (2,500 trees/ha).

Economic Considerations

- With high fruit prices optimum density is high >1,500 trees/acre.
- With moderate fruit prices optimum density is 1,000 trees/acre
- With low fruit prices all systems are not profitable.
- Regardless of land cost or interest rate the optimum density is ~1,000 trees/acre

Conclusions

- 1. All Planting Systems were profitable!
- 2. The Higher Density planting systems reached full production more quickly than lower densities.
- 3. Higher density orchards did not ultimately produce a higher yield per acre.
- 4. Quality was difficult to maintain on multiple row systems but not single row systems

Conclusions

- From the Processing Systems Trials:
 - The higher density systems produce much higher yields than the low density systems with all varieties.
 - The highest yielding varieties had 1.5 to 2 times the yield of the lowest yielding variety.
 - Better soils give significantly greater yield.
 - With peeler prices the breakeven year is likely to be much later (year18-20) than with fresh fruit prices (year 10-13).

Economic Considerations

- Long term profitability is maximized by planting high tree densities.
- Optimum density depends on fruit price tree price, land cost and establishment costs.
 - For Slender Pyramid, Vertical Axis, and Slender Axis the best quality trees are the most profitable even if the cost is high.
 - For Tall Spindle moderate tree prices are essential for profitability.
 - For Super Spindle low tree prices are essential for profitability.
- At the very high planting densities the cost per tree has a large impact on profitability.
- The greater the investment in a new orchard the greater the risk, thus higher tree densities usually bring higher risk.

Economic Considerations

- We believe the best combination of high profitability without excessive risk is achieved by:
 - The Tall Spindle (3-4' X 11 X 12') for fresh fruit blocks. This gives a tree density range of 907-1320 trees/acre.
 - The Vertical Axis (5-6' X 14') for low priced apple or processing blocks. This gives a tree density range of 518- 622 trees/acre.

Our Systems Trials have shown the most successful plantings have:

- Planting densities of 800 1000 tree/acre
- Size controlling and precocious Rootstocks - preferably an appropriate clone of M.9, B.9 or a Geneva stock (G.11, G935, G.41).
- 3. Are planted in Single rows
- 4. Use high quality large feathered nursery stock.

Our Systems Trials have shown the most successful plantings use:

- 5. Trees are supported to 10 feet in height
- 6. Are minimally pruned and appropriately trained.
- 7. Are managed for a balance of growth and fruiting.
- 8. Pest are managed for minimal effect on trees and fruit.

Vertical Axis vs. Tall Spindle Similarities?

Early Fruiting and Yields
High Quality Fruit
High Mature Yields
Labor Efficiency

Vertical Axis vs. Tall Spindle Differences?

- Density/Spacing
 - VA High
 - TS Higher
- Nursery Tree required
 - VA Better
 - TS Best
- Training/Pruning
 - VA Pinching
 - TS Tying/Weighting

- Support System
 - VA Post/Wire/Stakes
 - TS Post/Wire/Support
- Rootstock ?
 - VA Full Dwarf?
 - TS Full Dwarf

Components – Vertical Axis Density

- High Density
 - 500-700 trees/acre arranged in single rows.
 - Between row spacing of 12-14 feet
 - In-row tree spacing of 5-7 feet
 - Tree height of 11-12 feet with a narrow canopy width along the axis of only 3-5 feet

Components – Tall Spindle Density

• Higher density

- 1000 1500 trees per acre.
- The optimum average spacing for Tall Spindle is 3 X 11 ft
- Maximum of 12 feet between rows.
- The maximum in-row spacing is 4 feet
- Proper selection of density for any system depends on consideration of the vigor of the variety and rootstock and the soil strength

Components – VA Rootstock

- Best with vigorous clones of full dwarf rootstocks, M.9 Nic29, or B.9
- Dwarf Geneva rootstocks especially where fireblight is a problem (G.11, G.41,G.935)
- M.26 for very weak varieties

Essential Components – TS Rootstock

• Full dwarfing rootstocks –

- The most successful Tall Spindle orchards established to date have been on M.9 and B.9. Precocious dwarfing stocks are important since early cropping is essential.
- The yield efficiency and precocity of the Geneva rootstock series justifies their use especially where fireblight is a concern. Geneva 41, and G.11, are appropriate rootstocks for the Tall Spindle.
- More vigorous rootstocks especially G.935 should only be used with the weakest growing varieties such as Spur Delicious and Honeycrisp.

Components – VA Nursery Stock

- Excellent feathered nursery tree
 - Trees with scaffolds provide bearing surface for early production.
 - Some transplant shock caused by a high top to root ration helps keep trees within this tight spacing. It also contributes to significant early fruit bud differentiation the year of planting.
 - Early bearing is essential to help pay for increased tree numbers and establishment costs.

Essential Component – TS Nursery Stock

- Highly feathered nursery trees
 - Nursery trees ideally have from 10-15 feathers per tree.
 - Trees with scaffolds provide bearing surface for production in the second leaf.
 - Transplant shock caused by a high top to root ration helps keep trees within this tight spacing. It also contributes to significant fruit bud differentiation the year of planting.
 - Early bearing is essential to help pay for increased tree numbers and establishment costs.

Essential Components – TS Yield

- Early Fruiting
 - Fruiting in the second and third leaf is essential to keep a low tree vigor level and provide income from early fruit sales.
 - Crops in the early years must also be carefully managed to prevent biennial bearing.
 - Aggressive pest management practices are essential starting in the second year since marketable crops are expected and necessary for optimum profitability.
 - This is the only system we have ever tested that achieved a cumulative production over 1000 bushels in the 1st five years, resulting in approximately a 40% increase in crop value compared to the Slender Vertical Axis and Sol Axis planting systems.

Essential Components – VA Support Systems

- Full Support System
- 10 ft in height
- High Wire with individual tree stakes

Essential Components – TS Support System

- Full Support System
- 10 ft in height
- Tall inline support posts (12 ft) and multiple wires. Training wires or stakes ideal

Components – VA Pruning and Training

Before

After

- Tip leader and side branches at planting to provide balance between the top and root and to encourage growth.
- Select leader
- Pinch new shoots along top ¹/₂ of the leader 1-3 times

Essential Components – TS Pruning and Training

- Minimal pruning at planting
 - The Tall Spindle system is planted in place! Very little growth needed to fill the available space, therefore very little pruning is needed.
 - Pruning is limited to only the removal of a few larger branches along the leader. Generally, those that are more than ½ the diameter of the leader at the insertion point are removed
 - An important objectives is to actually cause some transplant shock..

Essential Components – TS Pruning and Training

• Branch devigoration

- 1st leaf
- Upright scaffold branches are devigorated by bending below the horizontal through bending.
- Use branch weights, rubber bands, or tying
- Branch bending maintains vigor, keeps trees within allotted space, and encourages the production of fruit buds for the following growing season.

Components – VA Pruning and Training

- Permanent bottom tier scaffolds
- Renewable above bottom tier
- Proper top management essential

Essential Components – TS Pruning and Training

• Limb renewal

- ALL scaffolds are renewed by complete removal as they become too large for the available space and become out of balance within the tree.
- Renewal cuts are made using the standard method of using a "bevel cut" which encourages new shoots to form as replacement fruiting limbs.
- There are no permanent limbs within the tree.

Top Management

Leader Replacement

