Effects of local farm management on wild bees through temporal and spatial spillovers: evidence from Southern India

August 24, 2022 - Linda Steinhübel, Arne Wenzel, Prashant Hulamani, Stephan von Cramon-Taubadel & Nicole M. Mason

Steinhübel, L., Wenzel, A., Hulamani, P., von Cramon-Taubadel, S., & Mason, N. M. (2022). Effects of local farm management on wild bees through temporal and spatial spillovers: evidence from Southern India. Landscape Ecology.

Abstract

Context

The agricultural landscape in many low- and middle-income countries is characterized by smallholder management systems, often dependent on ecosystem services, such as pollination by wild pollinator populations. Increased adoption of modern inputs (e.g., agrochemicals) may threaten pollinators and smallholder crop production.

Objective

We aimed to identify the link between the use of agrochemicals and wild bee populations in Southern India, while explicitly considering the effects of temporal and spatial scaling.

Methods

For our empirical analysis, we combined data from pan trap samples and a farm management survey of 127 agricultural plots around Bangalore, India. We implemented a Poisson generalized linear model to analyze factors that influence bee abundance and richness with a particular focus on the present, past, and neighboring management decisions of farmers with respect to chemical fertilizers, pesticides, and irrigation.

Results

Our results suggest that agricultural intensification is associated with a decrease in the abundance and richness of wild bees in our study areas. Both time and space play an important role in explaining farm-bee interactions. We find statistically significant negative spillovers from pesticide use. Smallholders’ use of chemical fertilizers and irrigation on their own plots significantly decreases the abundance of bees. Intensive past management reduces both bee abundance and richness.

Conclusions

Our results suggest that cooperative behavior among farmers and/or the regulation of agrochemical use is crucial to moderate spatial spillovers of farm management decisions. Furthermore, a rotation of extensive and intensive management could mitigate negative effects.

 


Authors

Accessibility Questions:

For questions about accessibility and/or if you need additional accommodations for a specific document, please send an email to ANR Communications & Marketing at anrcommunications@anr.msu.edu.